
Introduction

Climate change has evolved from a prospective 
threat to an urgent problem, reshaping global ecological 
systems. The World Meteorological Organization 
(WMO) reports that the period from 2015 to 2022 was 
the hottest eight-year span in recorded history, with the 
frequency of intense heatwaves and catastrophic floods 
significantly surpassing 20th-century averages. Crucially, 
multiple climate tipping points now loom: accelerating 

Arctic permafrost thaw, releasing methane, systemic 
deterioration of Amazonian carbon sequestration 
capacity, and unprecedented Greenland ice sheet melt 
rates ‒ nonlinear changes that may induce irreversible 
ecological cascades. The WMO’s 2023 Global Climate 
Report recorded a 1.45ºC (±0.12ºC) global surface 
temperature anomaly relative to pre-industrial levels 
(1850-1900). In contrast, its 2024 update warns of 
persistently rising greenhouse gas concentrations, which 
are exhibiting increasingly irreversible, centuries-long 
impacts on the climate system. Scientific consensus 
confirms that breaching the 1.5ºC temperature 
threshold established by the Paris Agreement would 
trigger positive feedback mechanisms in the climate 
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Abstract

Climate change has emerged as one of the most critical challenges of the 21st century, exerting 
multidimensional shocks that significantly disrupt ecological integrity and socioeconomic systems. 
As the core of the financial system, banks’ risk governance capacity has a critical influence on both 
economic growth and financial stability. This study examines the distinct transmission mechanisms 
of physical and transition climate risks through an analysis of panel data from 189 Chinese regional 
commercial banks (2014-2023) using a two-way fixed effects model. Our results demonstrate that 
(i) both physical and transition risks significantly increase bank credit risk; (ii) long-term gradual
climate change and extreme weather events increase default probabilities through climate-induced
economic losses to borrowers, and (iii) transition risks impair credit quality primarily by reducing
corporate solvency. We further identify insurance as an effective mitigant of weather-related credit risks
and reveal spatial heterogeneity – banks in China’s Hu Line transition zone face greater physical risks,
while southeastern institutions are more exposed to transition risks. Based on these empirical findings,
this study proposes concrete policy recommendations to strengthen the management of climate risks
within the banking sector.
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system, leading to irreversible ecological damage and 
amplifying risks.

Simultaneously, climate risks are destabilizing 
the global economic system at unprecedented speed 
and scale, with cascading effects that extend beyond 
traditional environmental boundaries and threaten to 
trigger a systemic financial crisis. World Meteorological 
Organization (WMO, 2021) data reveal a fivefold 
increase in global climate disasters from 1970 to 2019, 
with associated economic losses soaring sevenfold to 
$3.64 trillion, equivalent to $202 million daily. China’s 
Ministry of Emergency Management (2024) reports that 
direct economic losses from natural disasters in China 
reached 401.1 billion yuan in 2024. In addition to the 
explicit losses caused by physical risks, the implicit 
costs induced by transition risks are equally significant: 
International Energy Agency (IEA, 2020) projections 
indicate stranded assets in carbon-intensive sectors 
could total $10 trillion by 2050 and $28 trillion by the 
century’s end, underscoring the profound structural 
transformations facing global markets.

In modern economic systems, the deepening 
coupling between the real economy and financial 
systems means that climate change’s adverse impacts on 
the real economy will propagate systemic effects through 
financial transmission mechanisms. Recognizing this 
threat, the Bank for International Settlements (BIS, 
2020) introduced the “green swan” framework to 
describe systemic financial risks arising from climate-
induced extreme environmental events.

The climate governance transition has elevated 
climate-financial risk as an urgent research priority. 
Commercial banks, as key financial intermediaries, 
play dual roles in transmitting and absorbing these risks 
while maintaining economic stability. This study makes 
three contributions to climate finance research: Initially, 
it pioneers a dual-dimensional physical risk metric 
(incorporating both long-term gradual changes and 
short-term extreme events) and a tripartite transition risk 
framework (encompassing policy regulation, demand 
shifts, and technological innovation), systematically 
elucidating how non-economic exogenous shocks 
propagate to bank credit risk. Secondly, we identify 
a “dual-channel” transmission mechanism: physical 
risks directly impair collateral values through asset 
depreciation, whereas transition risks indirectly elevate 
corporate default probabilities via financial distress. 
Crucially, we reveal the moderating effect of climate 
insurance in attenuating these pathways. Ultimately, 
employing spatial econometric analysis along the Hu 
Line, we demonstrate significant regional heterogeneity 
‒ banks in transitional zones exhibit heightened 
sensitivity to physical risks, while southeastern 
institutions face greater vulnerability to transition 
risks. These findings provide scientific foundations for 
differentiated macroprudential policies and offer critical 
insights for refining China’s climate-financial regulatory 
architecture.

Literature Review and Research Hypothesis

Literature Review

Climate change poses significant threats to both 
human habitats and quality of life, while its derivative 
financial risks propagate through real economic channels 
to the financial sector [1]. The U.S. Financial Stability 
Oversight Council (FSOC) formally recognized climate 
change as an emerging threat to financial stability in 
its 2021 Report on Climate-Related Financial Risk, 
underscoring its growing prominence in academic 
and policy discourse. Climate financial risk, which 
encompasses both the economic uncertainties caused by 
climate change itself and those arising from subsequent 
socioeconomic transitions [2], is typically classified 
into physical and transition risks based on their origins 
[3]. Physical risks, rooted in the natural manifestations 
of climate change, involve financial losses from 
acute climate events or chronic environmental shifts. 
Transition risks, conversely, emerge from societal 
responses to climate change, including policy reforms, 
technological disruptions, and evolving market 
preferences that may generate economic and financial 
instability.

Physical risks primarily refer to the heightened 
risks of increased non-performing loan ratios and 
asset impairments for financial institutions, stemming 
from global warming and extreme weather events. 
The dominant empirical method measures climate 
shocks through observable meteorological extremes, 
particularly temperature and precipitation deviations 
[4, 5]. Recent methodological advancements have 
transitioned to multidimensional catastrophe risk 
frameworks to overcome the limitations of univariate 
climatic indicators. This model is illustrated by Yang 
et al. (2024), whose frequency-based examination of 
natural disasters offers a thorough evaluation of physical 
risk transmission mechanisms in China’s financial 
system [6]. Recent empirical studies have established 
methodologies for assessing climate-related financial 
risks using various disaster metrics. Jiang et al. (2023) 
examined the impacts of drought on the profitability 
of the banking sector [7], Lv et al. (2024) examined 
the impact of typhoon exposure on the risk-taking 
behavior of financial institutions [8], while Shen et al. 
(2023) quantify the severity of climate hazards through 
economic losses induced by disasters [9]. Researchers 
have developed composite risk indices to overcome 
the limitations of unidimensional assessment methods 
by incorporating multiple impact dimensions. These 
methodologies generally utilize weighted combinations 
of essential variables, exemplified by Wang et al.’s (2023) 
use of entropy weighting to create a comprehensive 
risk metric that includes economic damage, human 
exposure, and other significant factors [10]. Empirical 
evidence identifies two separate mechanisms through 
which extreme climate events threaten financial 
stability: Initially, direct channels related to corporate 
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asset impairments [11] and household net worth 
erosion drive immediate deterioration in bank asset 
quality. Second, indirect channels ‒ notably reduced 
labor productivity [12] and supply chain failures [13] 
‒ propagate systemic risk by progressively weakening 
borrowers’ repayment ability. Following the TCFD 
(2016) taxonomy, physical climate risks are categorized 
into acute and chronic manifestations. Although the 
academic focus has primarily been on acute shocks, 
the financial ramifications of gradual climatic changes, 
such as global warming and sea-level rise, deserve equal 
scrutiny. Recent data suggests that these chronic risks 
significantly affect financial stability, as demonstrated 
by the decline in credit quality within banks’ portfolios 
linked to assets vulnerable to sea-level rise [14].

Transition risks constitute a systemic financial peril 
of equal scale to physical climate hazards, stemming 
from global decarbonization initiatives designed to 
mitigate climate change and avert probable “green 
swan” occurrences. The transition process produces risk 
consequences via three interrelated factors: tightening 
climate policies, emerging low-carbon consumption 
preferences, and technological disruptions. These risks 
primarily manifest as financial spillovers from energy-
intensive industries undergoing decarbonization. 
Carbon-intensive corporations demonstrate markedly 
elevated financial distress risk relative to sector 
peers [15]. The process of transmitting material 
credit risk occurs through financial networks [16].  
The sustainability transition has altered essential 
business conditions for high-emission companies 
through (1) policy-induced increases in operational costs 
and (2) deteriorating asset-stranding dynamics. These 
combined pressures increase the likelihood of company 
failures, facilitating systemic risk transmission via 
financial channels. The decarbonization process exhibits 
bimodal temporal impacts ‒ immediate regulatory 
compliance costs raise default likelihood through price 
transmission pathways [17]. In the long run, structural 
economic transformation will cultivate emergent 
industries, enhancing investment and credit demand 
while infusing new vigor into economic growth [18]. 
Recent studies primarily investigate the implications 
of environmental policies; for example, Li et al. (2022) 
illustrate the prevalence of transition “pressure effects”, 
wherein transition risk intensifies company risk 
exposures and increases the likelihood of bankruptcy 
[19]. Furthermore, the financial impacts of transition 
risks also affect capital markets, as high-risk firms 
face notably increased financing costs, indicative of a 
recognized carbon risk premium in equity valuations. 
This pricing dynamic indicates that financial institutions 
with significant exposures to carbon-intensive assets are 
especially susceptible to transition risks. The academic 
literature indicates the complex effects of environmental 
regulations on the banking sector, highlighting both 
the amplification of credit risk [20] and the potential 
for stimulating sector development [21]. Transition risk 
quantification poses more significant methodological 

challenges than physical risk assessment, leading to the 
development of innovative approaches such as climate 
policy uncertainty indices derived from economic 
policy frameworks [22] and the prevalent use of carbon 
emissions as a direct proxy for transition risk exposure 
[23].

This review highlights three essential research 
findings in the literature on climate financial risk. The 
academic inquiry has primarily concentrated on macro-
level analyses of climate risk measurement, the impacts 
on financial systems, and transmission mechanisms, 
largely utilizing the physical-transition risk dichotomy. 
Although these studies consistently demonstrate 
bidirectional interactions between climate and finance, 
there is a lack of comprehensive micro-level analyses 
regarding institutional vulnerabilities. Secondly, while 
the TCFD’s (2016) acute-chronic risk classification has 
been adopted, research reveals a notable imbalance. 
The predominant emphasis on acute events tends to 
overlook human adaptive capacities and may lead to an 
overestimation of impacts. Conversely, the lack of focus 
on gradual changes fails to account for the potential for 
catastrophic disruptions. Third, the measurement of 
transition risk encounters methodological limitations, 
as existing policy-centric approaches depend on 
oversimplified proxies that do not adequately reflect 
systemic complexity. High-emission regions that rapidly 
adopt green technology may demonstrate lower-than-
anticipated transition risks, highlighting the necessity 
for comprehensive assessment frameworks.

Research Hypothesis

With accelerating global climate governance 
transitions, climate change has emerged as a systemic 
risk to financial stability worldwide. As the largest 
developing economy, China’s financial system confronts 
dual challenges from compounding physical and 
transition risks. Critically, a systematic literature review 
reveals two overarching research gaps: Primarily, 
physical risk metrics disproportionately emphasize acute 
shocks from extreme weather events while neglecting 
chronic stresses induced by long-term climatic shifts. 
Secondly, transition risk frameworks overemphasize the 
impacts of regulatory policy and inadequately integrate 
demand-side transitions and technological disruptions. 
To address these dual deficiencies, our study contributes 
three methodological innovations: (1) implementing the 
TCFD framework to decompose physical risks into acute 
shocks and chronic stresses; (2) developing an integrated 
transition risk assessment framework capturing policy 
interventions, market demand shifts, and technological 
innovation pathways simultaneously. Building on this 
synthesized paradigm, we propose:

H1: Banking-sector credit risk exposure exhibits 
statistically significant positive associations with both 
acute/chronic physical risks and transition risks.

Beyond this aggregate association, climate risks 
exhibit complex transmission linkages to bank credit 
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quality. Focusing specifically on physical risk channels, 
climatic shocks threaten financial stability through 
two empirically established pathways: First and most 
directly, extreme weather events substantially impair 
real estate collateral values, elevating non-performing 
loan ratios – a relationship empirically validated 
by Deryugina et al. (2018) through U.S. mortgage 
market analysis demonstrating hurricane-induced 
delinquency surges [24]. Second, climate-sensitive 
sectors (e.g., agriculture, manufacturing) experience 
marked deterioration in debt-servicing capacity due to 
supply chain disruptions. Compounding these effects, 
climate hazards disproportionately affect lower-income 
populations via: (1) asset value depreciation and (2) 
heightened health vulnerabilities (e.g., vector-borne 
disease expansion from rising temperatures [25]), 
intensifying the “health-poverty” trap and undermining 
repayment capacity. Collectively, these mechanisms 
degrade borrower balance sheets, increasing default 
probabilities and jeopardizing banking stability [26]. 
This physical risk transmission logic motivates:

H2: Climate physical risks significantly increase 
banking-sector credit risk exposure through amplified 
direct asset losses.

Parallel to physical mechanisms, transition shocks 
exert systemic disruptions through distinct channels. 
Three salient pathways emerge: Most directly, 
policy intensification elevates compliance costs, 
increasing corporate leverage [27] and impairing 
creditworthiness, triggering asset impairment that 
disproportionately devalues carbon-intensive firms. 
Critically, given these assets’ collateral function [28], 
market repricing heightens default probabilities via 
balance sheet contagion. Concurrently, transition-driven 
technological innovation generates dual pressures: 
passive adaptation erodes profitability through 
substitution risks, while active restructuring induces 
cost overruns. Simultaneously, shifting stakeholder 
preferences compress “brown” firms’ revenues [29]. 
Furthermore, these effects propagate through industrial 
interdependencies, amplifying systemic vulnerabilities 
via supply chain contagion. Consequently, we posit:

H3: Climate transition risks elevate banking-system 
credit risk through dual channels: corporate performance 
deterioration and expanded risk exposure.

Complementing these risk transmission pathways, 
insurance markets provide critical stabilization buffers. 
Extreme weather events pose multidimensional threats, 
simultaneously damaging collateral and triggering 
disaster-depreciation-credit contraction cascades. 
Within this architecture, insurance fulfills essential 
functions: property coverage mitigates collateral 
devaluation spirals, while business continuity protection 
safeguards repayment capacity. Empirically validating 
this, U-Din et al. (2023) demonstrate comprehensive 
insurance’s dual mechanisms ‒ loss containment and 
recovery acceleration ‒ via efficient claims resolution 
in Canadian banking [30]. Consequently, we propose 
Hypothesis 4:

H4: Insurance coverage effectively buffers extreme 
weather-induced credit risk shocks in the Chinese 
banking system.

Within China’s distinctive geoclimatic context, 
spatial heterogeneity modulates these dynamics. 
Anchored by the Hu Line ‒ a seminal socioeconomic-
geographic demarcation ‒ three interconnected 
dimensions emerge: First, financial architecture 
divergence enhances risk absorption in the southeast 
(sophisticated infrastructure/diversified portfolios) 
versus transitional zones’ diminished resilience 
(financial market thinness). Second, ecological fragility 
differentials amplify physical risk exposure: transitional 
regions face a disproportionately higher frequency of 
disasters than the stable southeast. Third, industrial 
composition induces asymmetric vulnerabilities ‒ 
transitional areas’ primary-sector reliance heightens 
physical risk sensitivity, while the southeast’s tertiary-
sector concentration amplifies transition risk exposure. 
This multidimensional analysis leads us to propose 
Hypothesis 5.

H5: Credit quality in China’s Hu Line transitional 
zone is more vulnerable to physical climate risks, 
whereas southeastern banks are more exposed to 
transition risks.

Materials and Methods

Sample and Data

The study utilizes multi-source data to ensure 
comprehensive coverage: meteorological data were 
extracted from the China Meteorological Disaster 
Yearbook, while macroeconomic indicators were 
collected from the China Statistical Yearbook and 
provincial statistical yearbooks. Bank-level variables 
were obtained from two primary sources: (1) the Wind 
Financial Database, and (2) official credit rating reports 
of regional commercial banks. Continuous variables 
were winsorized at the 1% and 99% levels to reduce 
the impact of outliers. The analysis encompasses the 
years 2014 to 2023, constrained by data availability. 
Table 1 provides comprehensive definitions of variables  
and the corresponding measurement methodologies.

Variable Definition

Assessment Methodology for Physical Risk‌

Climate physical risk is categorized into two distinct 
types: chronic physical risk stemming from long-term 
gradual climate change (LTGC), and acute physical risk 
induced by extreme weather events (EWE).

Current climate risk assessments predominantly 
rely on univariate indicators (e.g., temperature or 
precipitation anomalies) to measure long-term gradual 
climate change (LTGC). This conventional approach 
fails to capture critical risk amplification mechanisms 
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where W denotes the ‌lag window width‌. Subsequently, 
we compute ‌a measure of volatility‌ for the annual 
average temperature.

	 	 (3)

A 30-year lag window was used to calculate 
standardized temperature and precipitation anomalies. 
Higher numbers indicate more extreme climatic 
deviations from baseline conditions in the established 
measures. The composite index used entropy weighting 
to combine temperature and precipitation anomalies 
while preserving their geographical sensitivities.

An evaluation index system for Type II physical 
risks was developed across five dimensions, based  
on the classification criteria for extreme climate  
disasters outlined in the China Meteorological Disaster 
Yearbook and the China Statistical Yearbook, as shown 
in Table 2.

stemming from temperature-precipitation interactions, 
as exemplified by the compounding effects that occur 
when rising temperatures coincide with drought 
conditions. Moreover, the relative importance of 
specific climatic factors exhibits substantial spatial 
heterogeneity across regions. To overcome these 
limitations, we develop a composite LTGC index using 
the entropy weighting method. This novel framework:(1) 
integrates both temperature and precipitation anomalies,  
(2) incorporates spatially varying factor weights 
to account for regional differences. Utilizing the 
methodological framework set forth by Hong et al. (2018) 
[31] and Ding and Sun (2022) [32], our implementation 
proceeds through three steps:

	 	 (1)

	 	 (2)

Table 1. Variable definitions.

Type Notation variable Definition

Dependent Variable Npl Non-performing loan ratio Non-performing loans/Total loans

Independent Variable

LTGC Type I physical risks Long-term gradual climate change

EWE Type II physical risks Extreme weather events

ER Environmental regulation Composite pollutant emission index

Control Variables

Bsize Bank size Logarithm of total assets

Dep Deposit-to-Asset Ratio Deposits/Total assets

Pcr Loan loss provision coverage ratio Loan loss reserves / Non-performing loans

Ldr Loan-to-deposit ratio Total loans / Total deposits

Cir Cost-to-income ratio Operating costs / Operating income

Size Firm size ln(Total assets)

TobinsQ Tobin’s Q Market value/Replacement cost

HHIB Herfindahl-Hirschman Index Measuring industry concentration

Lngdp The natural logarithm of GDP LnGDP

Cpi Consumer Price Index CPI

Robustness Metrics

LTC Long-term climate change Selected base period of 20 years

EW Extreme weather Relative threshold method calculations

TR Transition risk A system of indicators that encompasses three types of 
risk sources

Mediation Effects

Loss Direct economic losses Direct economic losses/GDP

ZScore Firm operational risk Z-score

Fpro Firm profitability Net income/Total assets

Moderating Effects Bi Insurance penetration Unemployment insurance participants/Total population
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Assessment Methodology for Transition Risks

The existing literature primarily examines the 
effects of climate and environmental regulations (ER) on 
financial risks. This paper presents the Pollutant Release 
Composite Index as a proxy indicator for environmental 
regulation to quantify exposure to transition risk, 
based on the risk transmission mechanism defined by 
“pollution-intensive regions → high policy sensitivity”. 
This index functions as the main measure for evaluating 
transition risks.

The transmission mechanism of transition risks 
primarily functions through asset devaluation induced 
by carbon constraints. Commercial banks finance 
carbon-intensive real economy industries in China. 
Credit exposure risks are measured by two dimensions: 
(1) breadth (proportion of bank loans allocated to each 
industry) and (2) depth (carbon-intensity-weighted loan 
values that reflect sectoral CO2 emissions within loan 
portfolios). We define this dual-dimensional approach 
using the transition risk metric, using Li et al.’s (2022) 
[33] methodological framework: 

	 	 (4)

BTRi,t denotes the climate transition risk for bank i 
at time t, where: CEn,t represents the CO2 emissions of 
industry n in period t, ωn,i,t is the proportion of bank 
i’s loan exposure to industry n relative to its total loan 
portfolio at time t.

The three-dimensional framework created in this 
research solves gaps in the literature and improves 
transition risk assessment. Our integrated approach 
measures policy regulatory intensity via carbon-
intensity-weighted banking sector loan exposures, low-
carbon demand transition using public transportation 
passenger volume as a proxy for evolving consumer 
preferences toward sustainable consumption patterns 

[34], and green technological progress by measuring the 
absolute number of green invention patent applications 
and their relative proportion to total [35]. We use 
entropy weighting for objective aggregation to assess 
governmental, market, and technology forces within  
a single framework, allowing us to analyze transition 
risk transmission paths.

Bank Credit Risk

Within the multidimensional risk framework of 
financial institutions, credit risk emerges as the most 
dominant and disruptive risk dimension. Prevailing 
academic research predominantly analyzes bank credit 
risk through the credit asset quality perspective, where 
the non-performing loan (NPL) ratio has been established 
as the most reliable proxy for latent vulnerabilities in 
the banking sector. Consistent with this methodological 
convention, our study employs the NPL ratio as the core 
dependent variable.

Mediating Variables

Building on the theoretical framework that identifies 
two primary transmission mechanisms through which 
climate risks amplify bank credit risk, we employ 
the following measures: First, for regional climate 
shock exposure, we follow Klomp’s (2014) seminal 
methodology by calculating the ratio of direct economic 
losses from natural disasters to local GDP [36].  
This metric captures the relative severity of climate-
related economic disruptions at the regional level. 
Second, for firm-level risk assessment, we adopt:  
(1) the Z-score as a proxy for corporate financial 
fragility, which quantifies the probability of business 
insolvency; (2) Return on assets as a key profitability 
metric, reflecting operational efficiency and financial 
health.

Table 2. Physical risk indicator system.

Type I Physical Risks Type II Physical Risks

Primary 
Indicators Secondary Indicators Indicator 

Properties Primary Indicators Secondary Indicators Indicator 
Properties

Temperature 
deviation

Standard deviation of 
temperature Positive Drought Risk Proportion of Affected Area by 

Drought Positive

Precipitation 
deviation

Standard deviation of 
precipitation Positive Flood, Geological

Disaster and Typhoon Risk

Proportion of Affected Areas by 
Flood, Geological

Disaster and Typhoon
Positive

Low Temperature
Freezing and Snow Disaster

Proportion of Affected Area by 
Low Temperature

Freezing and Snow Disaster
Positive

Scale of Affected
Population

Proportion of Affected
Population Positive

Economic Loss
Caused by Disaster Direct Economic Loss Positive
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Moderating Variables

Following Zhang’s (2024) methodology [37], we 
quantify social insurance coverage as the ratio of 
unemployment insurance participants to the total 
population. This measure reflects the shock-absorbing 
capacity of institutional safeguards, potentially 
attenuating climate-related credit risk spillovers to 
the Chinese banking system during extreme weather 
episodes.

Control Variables

To enhance the precision of our analysis, we 
incorporated control variables at the bank, firm, and 
macroeconomic levels. Bank-level controls comprise 
Bank size (Bsize), Deposit-to-Asset Ratio (Dep), Loan 
Loss Provision Coverage Ratio (Pcr), Loan-to-Deposit 
Ratio (Ldr), and Cost-to-Income Ratio (Cir). Firm-level 
controls include Firm size (Size), Tobin’s Q (TobinsQ), 
and the Industrial Herfindahl-Hirschman Index (HHIB). 
Macroeconomic controls consist of the natural logarithm 
of GDP (Lngdp) and Consumer Price Index (Cpi). 
Detailed variable definitions are provided in Table 1.

Model

Baseline Regression Model

This study begins with an empirical analysis based 
on historical data to examine the impact of climate 
risk on bank credit risk. Specifically, we employ the 
following model to conduct an in-depth analysis of the 
magnitude and direction of physical risk effects:

	 	 (5)

where i, t, and r index banks, years, and cities 
respectively; Riski,t measures the credit risk of a bank i 
in year t; Climatei,t is climate risk in the headquarters 
city r of bank i; bankctrlsi,t

 and  macroctrlsi,t
 are vectors of 

bank-level  and regional-level controls; ui and λt denote 
bank and year fixed effects.

Mechanism Test Model

We extend model (1) by utilizing a stepwise 
regression method to develop the subsequent mediation 
effect model:

	 	 (6)

	 	 (7)

Model (6) analyzes the transmission mechanisms 
through two distinct variables: Loss, which quantifies 
direct economic losses attributable to climate change, 
and Climate, which encompasses both chronic and 
acute physical risks. Extreme weather events (EWE) 
include direct loss components; thus, we utilize the 
extreme weather (EW) indicator to measure the second 
dimension of physical risk. 

Due to the inability to directly match micro-level 
data between banks and enterprises, this study adapts 
the methodological framework of Ge et al. (2021) [38] 
to implement a two-stage analytical approach. The first 
stage employs the firm-level model (5) to assess climate 
risk impacts on corporate operational performance, 
specified as:

Fig. 1. Physical and transition climate risks.
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	 	 (8)

The subscripts t, i, s denote time, enterprise, and 
region, respectively. Firm represents the relevant 
variables at the enterprise level, and the size and 
significance of β1 determines the degree of the impact of 
climate risk on the business situation of the enterprise.

Since model (8) already controls for individual firm 
and time fixed effects, the  captures the variation 
in business conditions of firms at the regional level 
due to climate risk after excluding firm and macro-
environmental factors. Therefore, a new estimator is 
defined in the area and time dimensions, which is used 
to link the 1-stage and 2-stage models.

	 	 (9)

We replace the estimate  with Climates,t  
in the baseline model to obtain the following 2-stage 
regression model (10). According to the sign and 
significance of the coefficient φ1 in this model, we can 
finally identify the indirect mechanism by which climate 
risk affects bank credit risk by influencing firms’ 
operational capability.

	 	(10)

Moderated Regression Analysis

To examine how insurance coverage moderates 
the impact of extreme weather on bank credit risk, we 
augment model (1) by introducing interaction terms.

	 	 (11)

where Bir,t denotes  the insurance coverage rate in the 
bank i headquarters city r, and the interaction term β3  
captures its moderating effect. Other variables follow 
model (1).

Results

Baseline Regression

Based on the results of the regression analysis 
conducted in Stata 16, it can be concluded that all three 
climate risk indicators significantly increase the credit 
risk exposure of commercial banks (Table 3). Extreme 

weather events (EWE) display a more noticeable 
influence at 0.979, significant at the 1% level, which can 
be attributed to their unpredictable qualities (Column 2). 
Long-term gradual climate risk (LTGC) illustrates  
a coefficient of 0.745 (Column 1), but extreme weather 
events (EWE) reveal a more prominent effect. According 
to the data presented in Column 3, transition risk (ER) 
has a considerable impact of 0.787, which indicates that 
carbon-intensive assets are being repriced on a systemic 
level. Therefore, Hypothesis 1 (H1) is supported.

Robustness Tests

To ensure the reliability of our findings, we 
conduct comprehensive robustness checks through two 

Table 3. Baseline regression results.

Variables Npl
(1)

Npl
(2)

Npl
(3)

LTGC
0.745**

(0.290)

EWE
0.979***

(0.127)

ER
0.787***

(0.241)

Dep
0.128** 0.122** 0.135**

(0.057) (0.056) (0.057)

Ldr
0.005*** 0.004*** 0.006***

(0.001) (0.001) (0.001)

Bsize
-0.157*** -0.132*** -0.146***

(0.042) (0.041) (0.042)

Cir
0.009*** 0.009*** 0.009***

(0.002) (0.002) (0.002)

Pcr
-0.003*** -0.003*** -0.003***

(0.000) (0.000) (0.000)

Lngdp
-0.576** -0.708*** -0.789***

(0.233) (0.223) (0.228)

Cpi
0.091*** 0.070** 0.087***

(0.033) (0.032) (0.033)

Constant
12.335* 17.672** 18.672**

(7.361) (7.120) (7.315)

bank YES YES YES

year YES YES YES

N 1486.000 1486.000 1486.000

R2 0.523 0.542 0.524

Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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complementary approaches: (1) alternative variable 
construction: We first assess the sensitivity of our 
climate variable measurements to the choice of the 
baseline period. Climate anomalies are highly sensitive 
to the reference period, which can introduce bias  
if not properly accounted for. To mitigate this, we 
recalculate standardized temperature and precipitation 
anomalies using two distinct reference periods: the 
conventional 30-year baseline (1984-2013) and a 
shorter but more recent 20-year baseline (1993-2013).  
The latter captures recent climatic shifts more precisely, 
reducing potential distortion from earlier outliers.  
These recalculated anomalies are then integrated into 
long-term climate change indicators using entropy 
weighting, a method that objectively assigns weights 
based on informational value, minimizing subjective 
bias. For extreme weather (EW) measurement, we 
employ the relative threshold method developed by Ren 
et al. (2010) [39], which accounts for China’s pronounced 
regional climatic diversity. Unlike absolute thresholds, 
this approach defines extremes relative to local historical 
conditions, ensuring cross-regional comparability. 
Similarly, we reconstruct our transition risk (TR) 
indicators by applying entropy-weighted integration 
across three critical dimensions ‒ policy, demand, 
and technology ‒ to produce a more balanced and 
representative composite measure. (2) Restricted Sample 
Analysis: Second, we address potential confounding 
effects from municipalities with unique administrative 
and economic characteristics. Specifically, we exclude 

the four directly controlled municipalities (Beijing, 
Tianjin, Shanghai, and Chongqing) from our sample. 
These cities exhibit distinct financial, policy, and 
developmental attributes that may not generalize to 
other regions. By omitting them, we test whether our 
baseline results hold for a more homogeneous subset 
of provinces. As summarized in Table 4, all climate 
risk coefficients remain statistically significant across 
both alternative variable specifications and restricted 
samples. The consistency of these estimates underscores 
the robustness of our baseline findings, reinforcing 
confidence in their validity.  

Mechanism Tests

Table 5 (Columns 1-4) displays the regression 
results for models (6) and (7). The positive coefficients 
for both climate indicators in Columns (1) and (3) are 
statistically significant, indicating that climate change 
incurs substantial economic costs for affected entities. 
Columns (2) and (4) indicate that these direct economic 
losses lead to a notable increase in bank credit risk.  
The findings demonstrate that direct economic losses 
serve as a key transmission channel through which 
climate risks are propagated to the banking sector, 
thereby verifying Hypothesis 2.

Table 6 presents the two-stage regression results, 
revealing consistent climate risk transmission channels. 
The first-stage estimates demonstrate statistically 
significant climate-driven increases in corporate 

Table 4. Robustness check results.

Variables
Alternative Variable Specifications Excluding Direct-Controlled Municipalities

Npl
(1)

Npl
(2)

Npl
(3)

Npl
(4)

Npl
(5)

Npl
(6)

LTC
0.594**

(0.276)

LTGC
0.722**

(0.317)

EW
0.978***

(0.236)

EWE
1.081***

(0.139)

TR
0.925***

(0.215)

ER
1.786***

(0.508)
Control Var YES YES YES YES YES YES

bank YES YES YES YES YES YES
year YES YES YES YES YES YES
N 1486.000 1486.000 1486.000 1383.000 1383.000 1383.000
R2 0.522 0.527 0.527 0.512 0.533 0.515

Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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operational risk across both Z-score (ZScore) and 
profitability (Fpro) measures. Second-stage results 
confirm that these firm-level impairments propagate to 
the banking sector, with the constructed corporate risk 
measure showing a significant negative association with 
loan performance. This empirical evidence establishes 
that climate transition risks systematically amplify credit 
risk in the regional banking sector by deteriorating local 
firms’ operational fundamentals, thereby supporting 
Hypothesis 3 (H3).

Moderated Regression Analysis

Columns (1) and (2) of Table 7 indicate a signif﻿icant 
negative relationship between the breadth of insurance 

coverage and banks’ non-performing loan (NPL) ratio. 
Additionally, the significantly negative coefficient for 
the interaction term between insurance coverage breadth 
and extreme weather implies that broader insurance 
coverage mitigates the adverse impact of extreme 
weather on banks’ credit risk, thereby supporting 
Hypothesis 4 (H4).

Heterogeneity Analysis

The regression findings indicate notable regional 
variation in exposure to climate risk. Columns (1) and 
(3) indicate that banks in the Hu Huanyong transition 
zone encounter significantly heightened physical climate 
risk. Columns (2) and (4) indicate that southeastern 

Table 5. Transmission mechanism through direct economic losses.

Variables
Loss
(1)

Npl
(2)

Loss
(3)

Npl
(4)

LTGC
0.033*** 0.501*

(0.003) (0.303)

EWE
0.008*** 0.912***

(0.003) (0.236)

Loss
7.028*** 7.409***

(2.592) (2.474)

Control Var YES YES YES YES

bank YES YES YES YES

year YES YES YES YES

N      1580.000 1486.000 1580.000 1486.000

R2 0.225 0.525 0.152 0.530

Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01.

Table 6. Climate risk transmission via corporate channel.

Variables
The first stage The second stage

Fpro
(1)

ZScore
(2)

Npl
(3)

Npl
(4)

ER
-0.044** -1.647*

(0.019) (0.943)

-9.399***

(2.792)

-0.251***

(0.075)

N 2327 13857 2321 13857

Control Var YES YES YES YES

Bank YES YES YES YES

year YES YES YES YES

Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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banks exhibit greater susceptibility to transition risk. 
As shown in Table 8, the findings highlight the uneven 
distribution of climate-related financial vulnerabilities 
across regions, thereby providing empirical support for 
Hypothesis 5 (H5).

Discussion

Empirically validated evidence demonstrates that 
climate change poses material and systemic threats 
to China’s financial stability. To mitigate these risks, 
coordinated efforts are imperative: financial regulators 
must develop climate stress-testing frameworks, 
ESG rating agencies should enhance their disclosure 
standards, and banks need to integrate physical and 
transition risks into their governance structures.

Crucially, to design such targeted interventions,  
a granular understanding of risk transmission 

mechanisms is essential. Delving into these pathways, 
our analysis reveals two distinct channels with profound 
regulatory implications: Physical risks directly degrade 
borrower repayment capacity, while transition risks 
erode capital buffers through carbon asset stranding. 
More critically, the pronounced geographical 
distribution of these risks  shows that banks along the 
Hu Huanyong Line are disproportionately vulnerable to 
physical shocks, whereas their southeastern counterparts 
bear heavier transition burdens. This stark spatial 
divergence  directly exposes two critical regulatory 
gaps:  first, homogeneous supervisory metrics fail to 
capture regional disparities, necessitating spatially 
differentiated regulatory architectures; and second, 
conventional stress testing inadequately accounts 
for complex interdependencies between risk factors. 
Collectively, these findings establish that spatially 
granular supervision is imperative for reconciling carbon 
neutrality ambitions with financial stability imperatives.

Beyond regulatory frameworks, market-based 
diagnostic tools exhibit parallel deficiencies. 
Complementary to the identified regulatory gaps, our 
examination of prevailing ESG rating frameworks 
identifies three material shortcomings that severely 
compromise their diagnostic value: (1) undifferentiated 
bundling of physical and transition risks, (2) failure to 
account for geographical vulnerability variations, and (3) 
omission of insurance-based mitigation evidence. These 
limitations, mirroring the regulatory blind spots, 
collectively undermine ESG ratings’ precision in 
assessing institutional climate resilience. Building upon 
this diagnosis, our findings provide a robust empirical 
basis for designing next-generation ESG frameworks 
incorporating risk-typed differentiation and spatial 
granularity – a paradigm shift from compliance-based 
reporting to genuinely predictive risk modeling.

Equally critical are deficiencies in risk quantification 
methodologies. Extending the critique of conventional 
approaches, our investigation into stress testing 
identifies three fundamental weaknesses: First, scenario 

Table 7. Insurance coverage as a risk mitigation mechanism.

Variables
Hu Line Transition Zone Southeastern Transition Zone

Npl
(1)

Npl
(2)

Npl
(3)

Npl
(4)

EW
0.959*** 0.676***

(0.315) (0.130)

ER
0.934*** 1.815**

(0.305) (0.807)

Control Var YES YES YES YES

bank YES YES YES YES

year YES YES YES YES

N 313.000 313.000 1092.000 1092.000

Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01.

Table 8. Heterogeneous effects across the Hu Line.

Variables Npl
(1)

Npl
(2)

Bi
-3.912*** -4.351***

(1.436) (1.414)

Stew
2.154***

(0.343)

Bi*Stew
-8.451***

(2.063)

Control Var YES YES

bank YES YES

year YES YES

N 1486.000 1486.000

Standard errors in parentheses, * p<0.1, ** p<0.05, *** p<0.01.
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designs inadequately distinguish between instantaneous 
weather shocks and cumulative climate changes. Second, 
pervasive spatial oversimplification generates materially 
biased risk metrics. Third, static model specifications 
ignore feedback loops mediated by insurance. These 
insights collectively establish the microfoundations 
for next-generation testing frameworks, which must 
integrate spatiotemporal heterogeneity and adaptive 
mechanisms. Such advancements are indispensable for 
realistically assessing banking resilience in the face of 
climate uncertainty.

Conclusions

Our empirical analysis, utilizing a two-way fixed 
effects model on panel data encompassing 189 local 
commercial banks across 30 Chinese provinces (2014-
2023), provides robust evidence that climate risk 
constitutes a material threat to financial stability in 
China. We demonstrate that both physical risks (chronic 
climate change and extreme weather events) and 
transition risks significantly elevate banks’ credit risk 
exposure. Notably, the acute nature and constrained 
buffering capacities associated with extreme weather 
events result in more pronounced impacts on credit 
quality compared to gradual climate change, while 
transition risk manifests heightened destructiveness 
primarily through the revaluation of high-carbon assets. 
Mechanism analysis confirms that these risks impair 
bank credit quality by deteriorating the underlying 
economic conditions and debt service capabilities of 
borrowers. Crucially, our findings identify expanded 
insurance coverage as an effective adaptation strategy, 
mitigating the adverse credit risk consequences 
of extreme weather by facilitating risk transfer. 
Furthermore, significant spatial heterogeneity exists 
along the Hu Line: banks operating in the transitional 
zone exhibit heightened sensitivity to physical risks, 
particularly extreme weather, whereas those in the 
southeastern region face greater exposure to transition 
risks. These results underscore the imperative for 
regionally differentiated, risk-specific prudential 
policies and adaptation mechanisms to safeguard 
China’s financial system against the multidimensional 
vulnerabilities posed by climate change.

Policy Implications

Empirically grounded policy recommendations 
are proposed to strengthen China’s climate-financial 
governance framework, specifically targeting enhanced 
systemic resilience and supervisory effectiveness in 
response to intensifying climate-related risks.

Within the regulatory domain, policymakers should 
prioritize two critical enhancements to strengthen 
climate resilience. First, capital adequacy and risk 
provisioning requirements must be calibrated according 
to geospatial variations in climate risk exposure. This 

differentiation should account for distinct risk profiles 
between regions, such as the transitional zone along 
the Hu Huanyong Line ‒ characterized by heightened 
physical risk vulnerability ‒ and southeastern areas 
facing greater transition risks. Such regionally tailored 
metrics would prevent systemic distortions inherent 
in uniform regulatory approaches. Second, regulatory 
authorities need to advance stress testing methodologies 
through dynamic co-assessment models that quantify 
cross-contagion effects between physical and transition 
risks. These enhanced models should incorporate 
multi-risk shock scenarios featuring synchronized risk 
factor interactions, thereby establishing institutional 
safeguards that simultaneously reconcile carbon 
neutrality objectives with financial stability while 
mitigating systemic instability resulting from regional 
imbalances.

In parallel with reforms for market instruments, 
transforming ESG ratings into effective risk-signaling 
tools requires two methodological advancements. First, 
rating methodologies should fundamentally restructure 
climate risk assessment by mandating disaggregation of 
exposures into physical risks (including both extreme 
weather events and progressive changes) and transition 
risks. Each category must receive differentiated 
weighting coefficients reflecting its distinct financial 
materiality. Second, embed geospatial and mitigation 
analytics: Integrate sub-national risk exposure mapping 
into rating methodologies while quantifying the loss-
absorption efficacy of risk transfer mechanisms (e.g., 
insurance penetration) within institutional resilience 
metrics.

Concurrently, for risk assessment frameworks, 
stress testing systems must evolve through two critical 
innovations. First, models should systematically embed 
risk mitigation instruments ‒ including climate-linked 
derivatives and insurance products ‒ to quantify 
endogenous moderating effects on financial shocks. 
Second, a complex systems-oriented methodology 
should be developed to assess bank resilience, 
specifically designed to pinpoint critical transmission 
nexuses and systemic fragility points within climate 
risk contagion networks. These enhancements would 
transform stress testing from static compliance exercises 
into anticipatory resilience diagnostics.
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