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Abstract

Climate change has emerged as one of the most critical challenges of the 21* century, exerting
multidimensional shocks that significantly disrupt ecological integrity and socioeconomic systems.
As the core of the financial system, banks’ risk governance capacity has a critical influence on both
economic growth and financial stability. This study examines the distinct transmission mechanisms
of physical and transition climate risks through an analysis of panel data from 189 Chinese regional
commercial banks (2014-2023) using a two-way fixed effects model. Our results demonstrate that
(1) both physical and transition risks significantly increase bank credit risk; (ii) long-term gradual
climate change and extreme weather events increase default probabilities through climate-induced
economic losses to borrowers, and (iii) transition risks impair credit quality primarily by reducing
corporate solvency. We further identify insurance as an effective mitigant of weather-related credit risks
and reveal spatial heterogeneity — banks in China’s Hu Line transition zone face greater physical risks,
while southeastern institutions are more exposed to transition risks. Based on these empirical findings,

this study proposes concrete policy recommendations to strengthen the management of climate risks

within the banking sector.
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Introduction

Climate change has evolved from a prospective
threat to an urgent problem, reshaping global ecological
systems. The World Meteorological Organization
(WMO) reports that the period from 2015 to 2022 was
the hottest eight-year span in recorded history, with the
frequency of intense heatwaves and catastrophic floods
significantly surpassing 20™-century averages. Crucially,
multiple climate tipping points now loom: accelerating
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Arctic permafrost thaw, releasing methane, systemic
deterioration of Amazonian carbon sequestration
capacity, and unprecedented Greenland ice sheet melt
rates — nonlinear changes that may induce irreversible
ecological cascades. The WMO’s 2023 Global Climate
Report recorded a 1.45°C (£0.12°C) global surface
temperature anomaly relative to pre-industrial levels
(1850-1900). In contrast, its 2024 update warns of
persistently rising greenhouse gas concentrations, which
are exhibiting increasingly irreversible, centuries-long
impacts on the climate system. Scientific consensus
confirms that breaching the 1.5°C temperature
threshold established by the Paris Agreement would
trigger positive feedback mechanisms in the climate
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system, leading to irreversible ecological damage and
amplifying risks.

Simultaneously, climate risks are destabilizing
the global economic system at unprecedented speed
and scale, with cascading effects that extend beyond
traditional environmental boundaries and threaten to
trigger a systemic financial crisis. World Meteorological
Organization (WMO, 2021) data reveal a fivefold
increase in global climate disasters from 1970 to 2019,
with associated economic losses soaring sevenfold to
$3.64 trillion, equivalent to $202 million daily. China’s
Ministry of Emergency Management (2024) reports that
direct economic losses from natural disasters in China
reached 401.1 billion yuan in 2024. In addition to the
explicit losses caused by physical risks, the implicit
costs induced by transition risks are equally significant:
International Energy Agency (IEA, 2020) projections
indicate stranded assets in carbon-intensive sectors
could total $10 trillion by 2050 and $28 trillion by the
century’s end, underscoring the profound structural
transformations facing global markets.

In modern economic systems, the deepening
coupling between the real economy and financial
systems means that climate change’s adverse impacts on
the real economy will propagate systemic effects through
financial transmission mechanisms. Recognizing this
threat, the Bank for International Settlements (BIS,
2020) introduced the “green swan” framework to
describe systemic financial risks arising from climate-
induced extreme environmental events.

The climate governance transition has elevated
climate-financial risk as an urgent research priority.
Commercial banks, as key financial intermediaries,
play dual roles in transmitting and absorbing these risks
while maintaining economic stability. This study makes
three contributions to climate finance research: Initially,
it pioneers a dual-dimensional physical risk metric
(incorporating both long-term gradual changes and
short-term extreme events) and a tripartite transition risk
framework (encompassing policy regulation, demand
shifts, and technological innovation), systematically
elucidating how non-economic exogenous shocks
propagate to bank credit risk. Secondly, we identify
a “dual-channel” transmission mechanism: physical
risks directly impair collateral values through asset
depreciation, whereas transition risks indirectly elevate
corporate default probabilities via financial distress.
Crucially, we reveal the moderating effect of climate
insurance in attenuating these pathways. Ultimately,
employing spatial econometric analysis along the Hu
Line, we demonstrate significant regional heterogeneity
— banks in transitional zones exhibit heightened
sensitivity to physical risks, while southeastern
institutions face greater vulnerability to transition
risks. These findings provide scientific foundations for
differentiated macroprudential policies and offer critical
insights for refining China’s climate-financial regulatory
architecture.

Literature Review and Research Hypothesis
Literature Review

Climate change poses significant threats to both
human habitats and quality of life, while its derivative
financial risks propagate through real economic channels
to the financial sector [1]. The U.S. Financial Stability
Oversight Council (FSOC) formally recognized climate
change as an emerging threat to financial stability in
its 2021 Report on Climate-Related Financial Risk,
underscoring its growing prominence in academic
and policy discourse. Climate financial risk, which
encompasses both the economic uncertainties caused by
climate change itself and those arising from subsequent
socioeconomic transitions [2], is typically classified
into physical and transition risks based on their origins
[3]. Physical risks, rooted in the natural manifestations
of climate change, involve financial losses from
acute climate events or chronic environmental shifts.
Transition risks, conversely, emerge from societal
responses to climate change, including policy reforms,
technological disruptions, and evolving market
preferences that may generate economic and financial
instability.

Physical risks primarily refer to the heightened
risks of increased non-performing loan ratios and
asset impairments for financial institutions, stemming
from global warming and extreme weather events.
The dominant empirical method measures climate
shocks through observable meteorological extremes,
particularly temperature and precipitation deviations
[4, 5]. Recent methodological advancements have
transitioned to multidimensional catastrophe risk
frameworks to overcome the limitations of univariate
climatic indicators. This model is illustrated by Yang
et al. (2024), whose frequency-based examination of
natural disasters offers a thorough evaluation of physical
risk transmission mechanisms in China’s financial
system [6]. Recent empirical studies have established
methodologies for assessing climate-related financial
risks using various disaster metrics. Jiang et al. (2023)
examined the impacts of drought on the profitability
of the banking sector [7], Lv et al. (2024) examined
the impact of typhoon exposure on the risk-taking
behavior of financial institutions [8], while Shen et al.
(2023) quantify the severity of climate hazards through
economic losses induced by disasters [9]. Researchers
have developed composite risk indices to overcome
the limitations of unidimensional assessment methods
by incorporating multiple impact dimensions. These
methodologies generally utilize weighted combinations
of essential variables, exemplified by Wang et al.’s (2023)
use of entropy weighting to create a comprehensive
risk metric that includes economic damage, human
exposure, and other significant factors [10]. Empirical
evidence identifies two separate mechanisms through
which extreme climate events threaten financial
stability: Initially, direct channels related to corporate
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asset impairments [11] and housechold net worth
erosion drive immediate deterioration in bank asset
quality. Second, indirect channels — notably reduced
labor productivity [12] and supply chain failures [13]
— propagate systemic risk by progressively weakening
borrowers’ repayment ability. Following the TCFD
(2016) taxonomy, physical climate risks are categorized
into acute and chronic manifestations. Although the
academic focus has primarily been on acute shocks,
the financial ramifications of gradual climatic changes,
such as global warming and sea-level rise, deserve equal
scrutiny. Recent data suggests that these chronic risks
significantly affect financial stability, as demonstrated
by the decline in credit quality within banks’ portfolios
linked to assets vulnerable to sea-level rise [14].
Transition risks constitute a systemic financial peril
of equal scale to physical climate hazards, stemming
from global decarbonization initiatives designed to
mitigate climate change and avert probable ‘“green
swan” occurrences. The transition process produces risk
consequences via three interrelated factors: tightening
climate policies, emerging low-carbon consumption
preferences, and technological disruptions. These risks
primarily manifest as financial spillovers from energy-
intensive  industries undergoing decarbonization.
Carbon-intensive corporations demonstrate markedly
elevated financial distress risk relative to sector
peers [15]. The process of transmitting material
credit risk occurs through financial networks [16].
The sustainability transition has altered essential
business conditions for high-emission companies
through (1) policy-induced increases in operational costs
and (2) deteriorating asset-stranding dynamics. These
combined pressures increase the likelihood of company
failures, facilitating systemic risk transmission via
financial channels. The decarbonization process exhibits
bimodal temporal impacts — immediate regulatory
compliance costs raise default likelihood through price
transmission pathways [17]. In the long run, structural
economic transformation will cultivate emergent
industries, enhancing investment and credit demand
while infusing new vigor into economic growth [18].
Recent studies primarily investigate the implications
of environmental policies; for example, Li et al. (2022)
illustrate the prevalence of transition “pressure effects”,
wherein transition risk intensifies company risk
exposures and increases the likelihood of bankruptcy
[19]. Furthermore, the financial impacts of transition
risks also affect capital markets, as high-risk firms
face notably increased financing costs, indicative of a
recognized carbon risk premium in equity valuations.
This pricing dynamic indicates that financial institutions
with significant exposures to carbon-intensive assets are
especially susceptible to transition risks. The academic
literature indicates the complex effects of environmental
regulations on the banking sector, highlighting both
the amplification of credit risk [20] and the potential
for stimulating sector development [21]. Transition risk
quantification poses more significant methodological

challenges than physical risk assessment, leading to the
development of innovative approaches such as climate
policy uncertainty indices derived from economic
policy frameworks [22] and the prevalent use of carbon
emissions as a direct proxy for transition risk exposure
[23].

This review highlights three essential research
findings in the literature on climate financial risk. The
academic inquiry has primarily concentrated on macro-
level analyses of climate risk measurement, the impacts
on financial systems, and transmission mechanisms,
largely utilizing the physical-transition risk dichotomy.
Although these studies consistently demonstrate
bidirectional interactions between climate and finance,
there is a lack of comprehensive micro-level analyses
regarding institutional vulnerabilities. Secondly, while
the TCFD’s (2016) acute-chronic risk classification has
been adopted, research reveals a notable imbalance.
The predominant emphasis on acute events tends to
overlook human adaptive capacities and may lead to an
overestimation of impacts. Conversely, the lack of focus
on gradual changes fails to account for the potential for
catastrophic disruptions. Third, the measurement of
transition risk encounters methodological limitations,
as existing policy-centric approaches depend on
oversimplified proxies that do not adequately reflect
systemic complexity. High-emission regions that rapidly
adopt green technology may demonstrate lower-than-
anticipated transition risks, highlighting the necessity
for comprehensive assessment frameworks.

Research Hypothesis

With accelerating global climate governance
transitions, climate change has emerged as a systemic
risk to financial stability worldwide. As the largest
developing economy, China’s financial system confronts
dual challenges from compounding physical and
transition risks. Critically, a systematic literature review
reveals two overarching research gaps: Primarily,
physical risk metrics disproportionately emphasize acute
shocks from extreme weather events while neglecting
chronic stresses induced by long-term climatic shifts.
Secondly, transition risk frameworks overemphasize the
impacts of regulatory policy and inadequately integrate
demand-side transitions and technological disruptions.
To address these dual deficiencies, our study contributes
three methodological innovations: (1) implementing the
TCFD framework to decompose physical risks into acute
shocks and chronic stresses; (2) developing an integrated
transition risk assessment framework capturing policy
interventions, market demand shifts, and technological
innovation pathways simultaneously. Building on this
synthesized paradigm, we propose:

H1: Banking-sector credit risk exposure exhibits
statistically significant positive associations with both
acute/chronic physical risks and transition risks.

Beyond this aggregate association, climate risks
exhibit complex transmission linkages to bank credit
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quality. Focusing specifically on physical risk channels,
climatic shocks threaten financial stability through
two empirically established pathways: First and most
directly, extreme weather events substantially impair
real estate collateral values, elevating non-performing
loan ratios — a relationship empirically validated
by Deryugina et al. (2018) through U.S. mortgage
market analysis demonstrating hurricane-induced
delinquency surges [24]. Second, climate-sensitive
sectors (e.g., agriculture, manufacturing) experience
marked deterioration in debt-servicing capacity due to
supply chain disruptions. Compounding these effects,
climate hazards disproportionately affect lower-income
populations via: (1) asset value depreciation and (2)
heightened health vulnerabilities (e.g., vector-borne
disease expansion from rising temperatures [25]),
intensifying the “health-poverty” trap and undermining
repayment capacity. Collectively, these mechanisms
degrade borrower balance sheets, increasing default
probabilities and jeopardizing banking stability [26].
This physical risk transmission logic motivates:

H2: Climate physical risks significantly increase
banking-sector credit risk exposure through amplified
direct asset losses.

Parallel to physical mechanisms, transition shocks
exert systemic disruptions through distinct channels.
Three salient pathways emerge: Most directly,
policy intensification elevates compliance costs,
increasing corporate leverage [27] and impairing
creditworthiness, triggering asset impairment that
disproportionately devalues carbon-intensive firms.
Critically, given these assets’ collateral function [28§],
market repricing heightens default probabilities via
balance sheet contagion. Concurrently, transition-driven
technological innovation generates dual pressures:
passive adaptation erodes profitability through
substitution risks, while active restructuring induces
cost overruns. Simultaneously, shifting stakeholder
preferences compress “brown” firms’ revenues [29].
Furthermore, these effects propagate through industrial
interdependencies, amplifying systemic vulnerabilities
via supply chain contagion. Consequently, we posit:

H3: Climate transition risks elevate banking-system
credit risk through dual channels: corporate performance
deterioration and expanded risk exposure.

Complementing these risk transmission pathways,
insurance markets provide critical stabilization buffers.
Extreme weather events pose multidimensional threats,
simultaneously damaging collateral and triggering
disaster-depreciation-credit ~ contraction  cascades.
Within this architecture, insurance fulfills essential
functions: property coverage mitigates collateral
devaluation spirals, while business continuity protection
safeguards repayment capacity. Empirically validating
this, U-Din et al. (2023) demonstrate comprehensive
insurance’s dual mechanisms — loss containment and
recovery acceleration — via efficient claims resolution
in Canadian banking [30]. Consequently, we propose
Hypothesis 4:

H4: Insurance coverage effectively buffers extreme
weather-induced credit risk shocks in the Chinese
banking system.

Within China’s distinctive geoclimatic context,
spatial  heterogeneity modulates these dynamics.
Anchored by the Hu Line — a seminal socioeconomic-
geographic demarcation — three interconnected
dimensions emerge: First, financial architecture
divergence enhances risk absorption in the southeast
(sophisticated  infrastructure/diversified  portfolios)
versus transitional zones’ diminished resilience
(financial market thinness). Second, ecological fragility
differentials amplify physical risk exposure: transitional
regions face a disproportionately higher frequency of
disasters than the stable southeast. Third, industrial
composition induces asymmetric vulnerabilities —
transitional areas’ primary-sector reliance heightens
physical risk sensitivity, while the southeast’s tertiary-
sector concentration amplifies transition risk exposure.
This multidimensional analysis leads us to propose
Hypothesis 5.

HS5: Credit quality in China’s Hu Line transitional
zone is more vulnerable to physical climate risks,
whereas southeastern banks are more exposed to
transition risks.

Materials and Methods
Sample and Data

The study utilizes multi-source data to ensure
comprehensive coverage: meteorological data were
extracted from the China Meteorological Disaster
Yearbook, while macroeconomic indicators were
collected from the China Statistical Yearbook and
provincial statistical yearbooks. Bank-level variables
were obtained from two primary sources: (1) the Wind
Financial Database, and (2) official credit rating reports
of regional commercial banks. Continuous variables
were winsorized at the 1% and 99% levels to reduce
the impact of outliers. The analysis encompasses the
years 2014 to 2023, constrained by data availability.
Table 1 provides comprehensive definitions of variables
and the corresponding measurement methodologies.

Variable Definition
Assessment Methodology for Physical Risk

Climate physical risk is categorized into two distinct
types: chronic physical risk stemming from long-term
gradual climate change (LTGC), and acute physical risk
induced by extreme weather events (EWE).

Current climate risk assessments predominantly
rely on univariate indicators (e.g., temperature or
precipitation anomalies) to measure long-term gradual
climate change (LTGC). This conventional approach
fails to capture critical risk amplification mechanisms
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Table 1. Variable definitions.

Type Notation variable Definition
Dependent Variable Npl Non-performing loan ratio Non-performing loans/Total loans
LTGC Type I physical risks Long-term gradual climate change
Independent Variable EWE Type II physical risks Extreme weather events
ER Environmental regulation Composite pollutant emission index
Bsize Bank size Logarithm of total assets
Dep Deposit-to-Asset Ratio Deposits/Total assets
Pcr Loan loss provision coverage ratio Loan loss reserves / Non-performing loans
Ldr Loan-to-deposit ratio Total loans / Total deposits
Cir Cost-to-income ratio Operating costs / Operating income
Control Variables
Size Firm size In(Total assets)
TobinsQ Tobin’s Q Market value/Replacement cost
HHIB Herfindahl-Hirschman Index Measuring industry concentration
Lngdp The natural logarithm of GDP LnGDP
Cpi Consumer Price Index CPI
LTC Long-term climate change Selected base period of 20 years
Robustness Metrics EW Extreme weather Relative threshold method calculations
TR Transition risk A system of indicators‘ that encompasses three types of
risk sources
Loss Direct economic losses Direct economic losses/GDP
Mediation Effects ZScore Firm operational risk Z-score
Fpro Firm profitability Net income/Total assets
Moderating Effects Bi Insurance penetration Unemployment insurance participants/Total population

stemming from temperature-precipitation interactions,
as exemplified by the compounding effects that occur
when rising temperatures coincide with drought
conditions. Moreover, the relative importance of
specific climatic factors exhibits substantial spatial
heterogeneity across regions. To overcome these
limitations, we develop a composite LTGC index using
the entropy weighting method. This novel framework:(1)
integrates both temperature and precipitation anomalies,
(2) incorporates spatially varying factor weights
to account for regional differences. Utilizing the
methodological framework set forth by Hong et al. (2018)
[31] and Ding and Sun (2022) [32], our implementation
proceeds through three steps:

_ Xk=1tempi_y

MY .. =
tempit W (1
1
2\2
w _ Z¥=1(tempit—k - Mxmpit)
SDtemPit - w

2

where W denotes the lag window width. Subsequently,
we compute a measure of volatility for the annual
average temperature.

temp‘-” _ [tempit - Mtvgmpit]
N SDtvzmpit 3)

A 30-year lag window was used to calculate
standardized temperature and precipitation anomalies.
Higher numbers indicate more extreme climatic
deviations from baseline conditions in the established
measures. The composite index used entropy weighting
to combine temperature and precipitation anomalies
while preserving their geographical sensitivities.

An evaluation index system for Type II physical
risks was developed across five dimensions, based
on the classification criteria for extreme climate
disasters outlined in the China Meteorological Disaster
Yearbook and the China Statistical Yearbook, as shown
in Table 2.
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Assessment Methodology for Transition Risks

The existing literature primarily examines the
effects of climate and environmental regulations (ER) on
financial risks. This paper presents the Pollutant Release
Composite Index as a proxy indicator for environmental
regulation to quantify exposure to transition risk,
based on the risk transmission mechanism defined by
“pollution-intensive regions — high policy sensitivity”.
This index functions as the main measure for evaluating
transition risks.

The transmission mechanism of transition risks
primarily functions through asset devaluation induced
by carbon constraints. Commercial banks finance
carbon-intensive real economy industries in China.
Credit exposure risks are measured by two dimensions:
(1) breadth (proportion of bank loans allocated to each
industry) and (2) depth (carbon-intensity-weighted loan
values that reflect sectoral CO, emissions within loan
portfolios). We define this dual-dimensional approach
using the transition risk metric, using Li et al.’s (2022)
[33] methodological framework:

BTRi,t - Ln (Z CETl,t * (l)n'i’t> (4)
n

BTR,, denotes the climate transition risk for bank i
at time ¢, where: CE,  represents the CO, emissions of
industry n in period 4, @, is the proportion of bank
i’s loan exposure to industry # relative to its total loan
portfolio at time ¢.

The three-dimensional framework created in this
research solves gaps in the literature and improves
transition risk assessment. Our integrated approach
measures policy regulatory intensity via carbon-
intensity-weighted banking sector loan exposures, low-
carbon demand transition using public transportation
passenger volume as a proxy for evolving consumer
preferences toward sustainable consumption patterns

Table 2. Physical risk indicator system.

[34], and green technological progress by measuring the
absolute number of green invention patent applications
and their relative proportion to total [35]. We use
entropy weighting for objective aggregation to assess
governmental, market, and technology forces within
a single framework, allowing us to analyze transition
risk transmission paths.

Bank Credit Risk

Within the multidimensional risk framework of
financial institutions, credit risk emerges as the most
dominant and disruptive risk dimension. Prevailing
academic research predominantly analyzes bank credit
risk through the credit asset quality perspective, where
the non-performing loan (VPL) ratio has been established
as the most reliable proxy for latent vulnerabilities in
the banking sector. Consistent with this methodological
convention, our study employs the NPL ratio as the core
dependent variable.

Mediating Variables

Building on the theoretical framework that identifies
two primary transmission mechanisms through which
climate risks amplify bank credit risk, we employ
the following measures: First, for regional climate
shock exposure, we follow Klomp’s (2014) seminal
methodology by calculating the ratio of direct economic
losses from natural disasters to local GDP [36].
This metric captures the relative severity of climate-
related economic disruptions at the regional level.
Second, for firm-level risk assessment, we adopt:
(1) the Z-score as a proxy for corporate financial
fragility, which quantifies the probability of business
insolvency; (2) Return on assets as a key profitability
metric, reflecting operational efficiency and financial
health.

Type I Physical Risks Type II Physical Risks
Primary Secondary Indicators Indicator Primary Indicators Secondary Indicators Indicator
Indicators y Properties y Y Properties
Tempera}ture Standard deviation of Positive Drought Risk Proportion of Affected Area by Positive
deviation temperature Drought
Precipitation | Standard deviation of o, Flood, Geological Proportion ofAffectesi Areas by ..
deviation recipitation Positive Disaster and Typhoon Risk Flood, Geological Positive
precip P Disaster and Typhoon
Low Temperature Proportion of Affected Area by N
Freezing and Snow Disaster Low Temperature Positive
& Freezing and Snow Disaster
Scale of Affected Proportion of Affected ..
. . Positive
Population Population
Economic Loss . . .
Caused by Disaster Direct Economic Loss Positive
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Fig. 1. Physical and transition climate risks.

Moderating Variables

Following Zhang’s (2024) methodology [37], we
quantify social insurance coverage as the ratio of
unemployment insurance participants to the total
population. This measure reflects the shock-absorbing
capacity of institutional safeguards, potentially
attenuating climate-related credit risk spillovers to
the Chinese banking system during extreme weather
episodes.

Control Variables

To enhance the precision of our analysis, we
incorporated control variables at the bank, firm, and
macroeconomic levels. Bank-level controls comprise
Bank size (Bsize), Deposit-to-Asset Ratio (Dep), Loan
Loss Provision Coverage Ratio (Pcr), Loan-to-Deposit
Ratio (Ldr), and Cost-to-Income Ratio (Cir). Firm-level
controls include Firm size (Size), Tobin’s Q (TobinsQ),
and the Industrial Herfindahl-Hirschman Index (HHIB).
Macroeconomic controls consist of the natural logarithm
of GDP (Lngdp) and Consumer Price Index (Cpi).
Detailed variable definitions are provided in Table 1.

Model

Baseline Regression Model

This study begins with an empirical analysis based
on historical data to examine the impact of climate
risk on bank credit risk. Specifically, we employ the
following model to conduct an in-depth analysis of the
magnitude and direction of physical risk effects:

Risk;; = a + p,Climate, ; + Bbank ¢ys,,

+ ,83macroctrlsr’t +u;+ A &

&)

where i, ¢, and r index banks, years, and cities
respectively; Risk,, measures the credit risk of a bank i
in year #; Climate,, is climate risk in the headquarters
city r of bank i bank“m” and macro,,, are vectors of
bank-level and regional-level controls; u, and 4, denote
bank and year fixed effects.

Mechanism Test Model

We extend model (1) by utilizing a stepwise
regression method to develop the subsequent mediation
effect model:

Loss;; = vy + v Climate, ; + v,Lngdp, ;
+v3Cpiye + A + €t (6)

Risk;; = yo + y1Loss; + y,Climate,
+V3bankctrlsi,t + V4macr0ctrlst

+ui + At + Si,t (7)

Model (6) analyzes the transmission mechanisms
through two distinct variables: Loss, which quantifies
direct economic losses attributable to climate change,
and Climate, which encompasses both chronic and
acute physical risks. Extreme weather events (EWE)
include direct loss components; thus, we utilize the
extreme weather (EW) indicator to measure the second
dimension of physical risk.

Due to the inability to directly match micro-level
data between banks and enterprises, this study adapts
the methodological framework of Ge et al. (2021) [38]
to implement a two-stage analytical approach. The first
stage employs the firm-level model (5) to assess climate
risk impacts on corporate operational performance,
specified as:
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Firm;, = a + p;Climateg, + p,Size;;
+IB3T0banl,t + ﬁ4HHIBl't
+Bslngdps + A +yi + U (8)

The subscripts ¢, i, s denote time, enterprise, and
region, respectively. Firm represents the relevant
variables at the enterprise level, and the size and
significance of 8, determines the degree of the impact of
climate risk on the business situation of the enterprise.

Since model (8) already controls for individual firm
and time fixed effects, the 1 captures the variation
in business conditions of firms at the regional level
due to climate risk after excluding firm and macro-
environmental factors. Therefore, a new estimator is
defined in the area and time dimensions, which is used
to link the 1-stage and 2-stage models.

Fuirmg, = By % Climates ; )

We replace the estimate F Frﬁs’t with Climate ,
in the baseline model to obtain the following 2-stage
regression model (10). According to the sign and
significance of the coefficient ¢, in this model, we can
finally identify the indirect mechanism by which climate
risk affects bank credit risk by influencing firms’
operational capability.

Riski¢ = @o + p1Firmg, + pbank s,
+@smacrogys,, + up + Ae+ &t

(10)

Moderated Regression Analysis

To examine how insurance coverage moderates
the impact of extreme weather on bank credit risk, we
augment model (1) by introducing interaction terms.

Risk;; = a + p,Climate,; + B,Bi,;
+p3Climate, ;. * Bi,; +
.84bankctrlsi,t + ﬁsmacroctrlsi,t
tu; + A + & )

where B, denotes the insurance coverage rate in the
bank i headquarters city 7, and the interaction term f,
captures its moderating effect. Other variables follow
model (1).

Results
Baseline Regression
Based on the results of the regression analysis
conducted in Stata 16, it can be concluded that all three

climate risk indicators significantly increase the credit
risk exposure of commercial banks (Table 3). Extreme

weather events (EWE) display a more noticeable
influence at 0.979, significant at the 1% level, which can
be attributed to their unpredictable qualities (Column 2).
Long-term gradual climate risk (L7GC) illustrates
a coefficient of 0.745 (Column 1), but extreme weather
events (EWE) reveal a more prominent effect. According
to the data presented in Column 3, transition risk (ER)
has a considerable impact of 0.787, which indicates that
carbon-intensive assets are being repriced on a systemic

level. Therefore, Hypothesis 1 (H1) is supported.

To ensure the reliability of our findings, we
conduct comprehensive robustness checks through two

Robustness Tests

Table 3. Baseline regression results.

. Npl Npl Npl
Variables
(1) (2) (3)
0.745™
LTGC
(0.290)
0.979"
EWE
(0.127)
0.787"
ER
(0.241)
0.128™ 0.122™ 0.135™
Dep
(0.057) (0.056) (0.057)
0.005™ 0.004" 0.006™
Ldr
(0.001) (0.001) (0.001)
-0.157" -0.132" -0.146™"
Bsize
(0.042) (0.041) (0.042)
0.009"" 0.009"" 0.009
Cir
(0.002) (0.002) (0.002)
-0.003"" -0.003"" -0.003""
Pcr
(0.000) (0.000) (0.000)
-0.576™ -0.708"" -0.789""
Lngdp
(0.233) (0.223) (0.228)
0.091" 0.070™ 0.087"
Cpi
(0.033) (0.032) (0.033)
12.335" 17.672™ 18.672™
Constant
(7.361) (7.120) (7.315)
bank YES YES YES
year YES YES YES
N 1486.000 1486.000 1486.000
R? 0.523 0.542 0.524

Standard errors in parentheses, * p<0.1, ™ p<0.05, ™" p<0.01.
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complementary approaches: (1) alternative variable
construction: We first assess the sensitivity of our
climate variable measurements to the choice of the
baseline period. Climate anomalies are highly sensitive
to the reference period, which can introduce bias
if not properly accounted for. To mitigate this, we
recalculate standardized temperature and precipitation
anomalies using two distinct reference periods: the
conventional 30-year baseline (1984-2013) and a
shorter but more recent 20-year baseline (1993-2013).
The latter captures recent climatic shifts more precisely,
reducing potential distortion from earlier outliers.
These recalculated anomalies are then integrated into
long-term climate change indicators using entropy
weighting, a method that objectively assigns weights
based on informational value, minimizing subjective
bias. For extreme weather (EW) measurement, we
employ the relative threshold method developed by Ren
et al. (2010) [39], which accounts for China’s pronounced
regional climatic diversity. Unlike absolute thresholds,
this approach defines extremes relative to local historical
conditions, ensuring cross-regional comparability.
Similarly, we reconstruct our transition risk (7R)
indicators by applying entropy-weighted integration
across three critical dimensions — policy, demand,
and technology — to produce a more balanced and
representative composite measure. (2) Restricted Sample
Analysis: Second, we address potential confounding
effects from municipalities with unique administrative
and economic characteristics. Specifically, we exclude

Table 4. Robustness check results.

the four directly controlled municipalities (Beijing,
Tianjin, Shanghai, and Chongqing) from our sample.
These cities exhibit distinct financial, policy, and
developmental attributes that may not generalize to
other regions. By omitting them, we test whether our
baseline results hold for a more homogenecous subset
of provinces. As summarized in Table 4, all climate
risk coefficients remain statistically significant across
both alternative variable specifications and restricted
samples. The consistency of these estimates underscores
the robustness of our baseline findings, reinforcing
confidence in their validity.

Mechanism Tests

Table 5 (Columns 1-4) displays the regression
results for models (6) and (7). The positive coefficients
for both climate indicators in Columns (1) and (3) are
statistically significant, indicating that climate change
incurs substantial economic costs for affected entities.
Columns (2) and (4) indicate that these direct economic
losses lead to a notable increase in bank credit risk.
The findings demonstrate that direct economic losses
serve as a key transmission channel through which
climate risks are propagated to the banking sector,
thereby verifying Hypothesis 2.

Table 6 presents the two-stage regression results,
revealing consistent climate risk transmission channels.
The first-stage estimates demonstrate statistically
significant climate-driven increases in corporate

Alternative Variable Specifications Excluding Direct-Controlled Municipalities
Variables Npl Npl Npl Npl Npl
(1) 2 @) 5) (6)
0.594™
LTC
(0.276)
0.722™
LTGC
(0.317)
0.978"
EW
(0.236)
1.081™
EWE
(0.139)
0.925™"
TR
(0.215)
1.786™
ER
(0.508)
Control Var YES YES YES YES YES YES
bank YES YES YES YES YES YES
year YES YES YES YES YES YES
N 1486.000 1486.000 1486.000 1383.000 1383.000 1383.000
R? 0.522 0.527 0.527 0.512 0.533 0.515

Standard errors in parentheses, * p<0.1, ™ p<0.05, ™" p<0.01.
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Table 5. Transmission mechanism through direct economic losses.

Loss Npl Loss Npl
Variables (1) 2) 3) 4)
0.033™" 0.501"
LTGC
(0.003) (0.303)
0.008™ 0.912™
EWE
(0.003) (0.236)
7.028™" 7.4097
Loss
(2.592) (2.474)
Control Var YES YES YES YES
bank YES YES YES YES
year YES YES YES YES
N 1580.000 1486.000 1580.000 1486.000
R? 0.225 0.525 0.152 0.530

Standard errors in parentheses, * p<0.1, ™ p<0.05, ™" p<0.01.

operational risk across both Z-score (ZScore) and
profitability (Fpro) measures. Second-stage results
confirm that these firm-level impairments propagate to
the banking sector, with the constructed corporate risk
measure showing a significant negative association with
loan performance. This empirical evidence establishes
that climate transition risks systematically amplify credit
risk in the regional banking sector by deteriorating local
firms’ operational fundamentals, thereby supporting
Hypothesis 3 (H3).

Moderated Regression Analysis

Columns (1) and (2) of Table 7 indicate a significant
negative relationship between the breadth of insurance

Table 6. Climate risk transmission via corporate channel.

coverage and banks’ non-performing loan (NPL) ratio.
Additionally, the significantly negative coefficient for
the interaction term between insurance coverage breadth
and extreme weather implies that broader insurance
coverage mitigates the adverse impact of extreme
weather on banks’ credit risk, thereby supporting
Hypothesis 4 (H4).

Heterogeneity Analysis

The regression findings indicate notable regional
variation in exposure to climate risk. Columns (1) and
(3) indicate that banks in the Hu Huanyong transition
zone encounter significantly heightened physical climate
risk. Columns (2) and (4) indicate that southeastern

The first stage The second stage
Variables Fpro ZScore Npl Npl
) 2 3 “
-0.044" -1.647
ER
(0.019) (0.943)
-9.399™
Fpro
(2.792)
-0.251™
ZScore
(0.075)
N 2327 13857 2321 13857
Control Var YES YES YES YES
Bank YES YES YES YES
year YES YES YES YES

Standard errors in parentheses, * p<0.1, ™ p<0.05, ™" p<0.01.
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Table 7. Insurance coverage as a risk mitigation mechanism.

. Npl Npl
Variables
(1) 2)
-3.912" -4.351™"
Bi
(1.436) (1.414)
2.154"
Stew
(0.343)
-8.451™
Bi*Stew
(2.063)
Control Var YES YES
bank YES YES
year YES YES
N 1486.000 1486.000

Standard errors in parentheses, * p<0.1, "™ p<0.05, ™" p<0.01.

banks exhibit greater susceptibility to transition risk.
As shown in Table 8, the findings highlight the uneven
distribution of climate-related financial vulnerabilities
across regions, thereby providing empirical support for
Hypothesis 5 (HS).

Discussion

Empirically validated evidence demonstrates that
climate change poses material and systemic threats
to China’s financial stability. To mitigate these risks,
coordinated efforts are imperative: financial regulators
must develop climate stress-testing frameworks,
ESG rating agencies should enhance their disclosure
standards, and banks need to integrate physical and
transition risks into their governance structures.

Crucially, to design such targeted interventions,
a granular understanding of risk transmission

Table 8. Heterogeneous effects across the Hu Line.

mechanisms is essential. Delving into these pathways,
our analysis reveals two distinct channels with profound
regulatory implications: Physical risks directly degrade
borrower repayment capacity, while transition risks
erode capital buffers through carbon asset stranding.
More  critically, the pronounced geographical
distribution of these risks shows that banks along the
Hu Huanyong Line are disproportionately vulnerable to
physical shocks, whereas their southeastern counterparts
bear heavier transition burdens. This stark spatial
divergence directly exposes two critical regulatory
gaps: first, homogeneous supervisory metrics fail to
capture regional disparities, necessitating spatially
differentiated regulatory architectures; and second,
conventional stress testing inadequately accounts
for complex interdependencies between risk factors.
Collectively, these findings establish that spatially
granular supervision is imperative for reconciling carbon
neutrality ambitions with financial stability imperatives.

Beyond regulatory frameworks, market-based
diagnostic ~ tools  exhibit parallel deficiencies.
Complementary to the identified regulatory gaps, our
examination of prevailing ESG rating frameworks
identifies three material shortcomings that severely
compromise their diagnostic value: (1) undifferentiated
bundling of physical and transition risks, (2) failure to
account for geographical vulnerability variations, and (3)
omission of insurance-based mitigation evidence. These
limitations, mirroring the regulatory blind spots,
collectively undermine ESG ratings’ precision in
assessing institutional climate resilience. Building upon
this diagnosis, our findings provide a robust empirical
basis for designing next-generation ESG frameworks
incorporating risk-typed differentiation and spatial
granularity — a paradigm shift from compliance-based
reporting to genuinely predictive risk modeling.

Equally critical are deficiencies in risk quantification
methodologies. Extending the critique of conventional
approaches, our investigation into stress testing
identifies three fundamental weaknesses: First, scenario

Hu Line Transition Zone Southeastern Transition Zone
Variables Npl Npl Npl
(1) 3) )
0.959™ 0.676™
EW
(0.315) (0.130)
0.934™ 1.815™
ER
(0.305) (0.807)
Control Var YES YES YES
bank YES YES YES
year YES YES YES
N 313.000 313.000 1092.000 1092.000

Standard errors in parentheses, * p<0.1, "™ p<0.05, ™" p<0.01.
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designs inadequately distinguish between instantaneous
weather shocks and cumulative climate changes. Second,
pervasive spatial oversimplification generates materially
biased risk metrics. Third, static model specifications
ignore feedback loops mediated by insurance. These
insights collectively establish the microfoundations
for next-generation testing frameworks, which must
integrate spatiotemporal heterogeneity and adaptive
mechanisms. Such advancements are indispensable for
realistically assessing banking resilience in the face of
climate uncertainty.

Conclusions

Our empirical analysis, utilizing a two-way fixed
effects model on panel data encompassing 189 local
commercial banks across 30 Chinese provinces (2014-
2023), provides robust evidence that climate risk
constitutes a material threat to financial stability in
China. We demonstrate that both physical risks (chronic
climate change and extreme weather events) and
transition risks significantly elevate banks’ credit risk
exposure. Notably, the acute nature and constrained
buffering capacities associated with extreme weather
events result in more pronounced impacts on credit
quality compared to gradual climate change, while
transition risk manifests heightened destructiveness
primarily through the revaluation of high-carbon assets.
Mechanism analysis confirms that these risks impair
bank credit quality by deteriorating the underlying
economic conditions and debt service capabilities of
borrowers. Crucially, our findings identify expanded
insurance coverage as an effective adaptation strategy,
mitigating the adverse credit risk consequences
of extreme weather by facilitating risk transfer.
Furthermore, significant spatial heterogeneity exists
along the Hu Line: banks operating in the transitional
zone exhibit heightened sensitivity to physical risks,
particularly extreme weather, whereas those in the
southeastern region face greater exposure to transition
risks. These results underscore the imperative for
regionally  differentiated, risk-specific  prudential
policies and adaptation mechanisms to safeguard
China’s financial system against the multidimensional
vulnerabilities posed by climate change.

Policy Implications

Empirically grounded policy recommendations
are proposed to strengthen China’s climate-financial
governance framework, specifically targeting enhanced
systemic resilience and supervisory effectiveness in
response to intensifying climate-related risks.

Within the regulatory domain, policymakers should
prioritize two critical enhancements to strengthen
climate resilience. First, capital adequacy and risk
provisioning requirements must be calibrated according
to geospatial variations in climate risk exposure. This

differentiation should account for distinct risk profiles
between regions, such as the transitional zone along
the Hu Huanyong Line — characterized by heightened
physical risk vulnerability — and southeastern areas
facing greater transition risks. Such regionally tailored
metrics would prevent systemic distortions inherent
in uniform regulatory approaches. Second, regulatory
authorities need to advance stress testing methodologies
through dynamic co-assessment models that quantify
cross-contagion effects between physical and transition
risks. These enhanced models should incorporate
multi-risk shock scenarios featuring synchronized risk
factor interactions, thereby establishing institutional
safeguards that simultaneously reconcile carbon
neutrality objectives with financial stability while
mitigating systemic instability resulting from regional
imbalances.

In parallel with reforms for market instruments,
transforming ESG ratings into effective risk-signaling
tools requires two methodological advancements. First,
rating methodologies should fundamentally restructure
climate risk assessment by mandating disaggregation of
exposures into physical risks (including both extreme
weather events and progressive changes) and transition
risks. Each category must receive differentiated
weighting coefficients reflecting its distinct financial
materiality. Second, embed geospatial and mitigation
analytics: Integrate sub-national risk exposure mapping
into rating methodologies while quantifying the loss-
absorption efficacy of risk transfer mechanisms (e.g.,
insurance penetration) within institutional resilience
metrics.

Concurrently, for risk assessment frameworks,
stress testing systems must evolve through two critical
innovations. First, models should systematically embed
risk mitigation instruments — including climate-linked
derivatives and insurance products — to quantify
endogenous moderating effects on financial shocks.
Second, a complex systems-oriented methodology
should be developed to assess bank resilience,
specifically designed to pinpoint critical transmission
nexuses and systemic fragility points within climate
risk contagion networks. These enhancements would
transform stress testing from static compliance exercises
into anticipatory resilience diagnostics.
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