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Abstract

Traditional regional or annual average electricity carbon emission factors struggle to accurately
reflect the temporal and spatial variations in carbon emissions associated with electricity consumption,
making it difficult to support refined low-carbon management needs such as demand-side response,
green electricity trading, and carbon footprint accounting. The Time-Sharing and Zonal Electricity
Carbon Emission Factor (TSZ-ECF), a key metric that dynamically characterizes the marginal carbon
emission intensity per unit of electricity consumption across different time periods and grid nodes
(or regions), has garnered widespread attention in academia and industry in recent years. This paper
systematically reviews the theoretical foundations of TSZ-ECF, mainstream accounting methods, their
advantages and disadvantages, and applicable scenarios. It focuses on analyzing the application value
and practical progress of TSZ-ECF in areas such as electricity market mechanism design, user-side
carbon management, grid planning and operation, and policy formulation. Finally, the paper delves
into the key challenges faced in current research and outlines future research directions for TSZ-ECF.
This review aims to provide researchers and practitioners in related fields with a comprehensive overview
of the current state of research, promoting the advancement of TSZ-ECF theory, methodologies,
and applications to support the low-carbon transition of power systems and the achievement of “Carbon
Neutrality and Carbon Peaking” goals.
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Introduction to limit the global average temperature increase to

within 2°C above pre-industrial levels and strive to keep

Against the backdrop of global warming, in it within 1.5°C [1]. To better achieve this goal, China
December 2015, the Paris Agreement set a hard target issued the “Carbon Peaking” and “Carbon Neutrality”

plan (referred to as “Carbon Neutrality and Carbon
Peaking”) in October 2021. All industries across
the country have begun to systematically promote
the transformation of their industrial structures, striving
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to achieve a comprehensive green transition as soon
as possible [2]. In the power industry, in 2024, carbon
emissions from the power sector accounted for 45% of
the country’s total emissions [3]. Therefore, successful
emission reduction in the power industry is crucial
for the early realization of the “Carbon Neutrality and
Carbon Peaking” goals. Against this background,
China’s power industry covers extensive fields and
needs to accurately measure and control carbon
emissions. There are shortcomings in this process that
must be addressed in a targeted manner. Under current
conditions, this has become an urgent problem for the
industry to solve.

There have been some studies on the methods and
indicators for calculating carbon emissions, and the
electricity-carbon factor is one of the key indicators [4].
The electricity carbon factor, also known as the power
carbon dioxide emission factor or grid carbon emission
factor, refers to the carbon dioxide emissions caused
by the use of a unit of electricity during the production
process of a product. The traditional calculation method
mainly adopts the traditional grid carbon emission
factor method with a regional overall unit and a time
span of years. For instance, internationally, Australia
[5] and the United Kingdom [6] calculate the average
carbon emission factor on an annual basis. In addition,
some Chinese researchers have systematically sorted out
and summarized the development status and calculation
methods of the average electricity-carbon factor of
domestic and foreign power grids, and optimized the
calculation methods and management models of the
electricity-carbon factor from the practical application
level [7].

However, during the process of using the traditional
method for calculating power grid emission factors, it
was found that this method has a low update frequency
and precision, a large spatial span, and is difficult to
reflect the dynamic changes and regional differences
of carbon emissions in the power system. Therefore, in
order to precisely calculate the carbon emissions of each
region, it is necessary to calculate the power emission
factors by time periods and regions.

For the time-sharing and zoned problem, reference
[8] analyses the carbon mechanism of every grid-side
link. An optimised grid-side accounting method is
proposed. The new method cuts model complexity and
boosts data-update frequency. Reference [9] considered
the multi-period coupled MCI (Marginal Carbon
Intensity) theory and proposed and verified an adaptive
fast calculation method for MCI uncertainty analysis;
reference [10] proposed a carbon-green certificate
mutual recognition mechanism based on MCI, which
solved the incentive problem; reference [l1] built
a hierarchical, zoned, and decoupled model. It calculates
province-wide grid-supply carbon factors. The model
gives each sub-region its own targeted factor. Reference
[12] combines the carbon emission flow theory and
proposes a carbon emission calculation method for
each link in the entire process of the power system,

which can more accurately reflect the changes in carbon
emissions of the power system. Reference [13], based
on the typical spatio-temporal fusion characteristics of
power grid energy flow, proposed an hourly power grid
carbon emission factor prediction model based on the
T-Graphormer graph neural network, and the prediction
effect has been significantly improved. To address
the issue of data sensitivity, reference [14] adopts
a distributed architecture for cross-grid collaborative
calculation of power carbon emission factors, enabling
each company to accurately calculate the regional power
carbon emission factors of each province simply by
exchanging the calculation results of the factors. Among
the current methods for calculating the electro-carbon
factor in China, reference [15] proposed a calculation
method for the carbon emission flow of the power
system based on the power flow distribution matrix,
successfully achieving accurate tracking and source
tracing of the carbon emission flow of the power system.
Reference [16] proposed a carbon flow analysis method
based on graph theory, which improved the deficiencies
of existing methods in the distribution of carbon flow
networks and path traceability. Based on the theory
of carbon emission flow analysis in power systems.
Reference [17] proposed a carbon measurement method
for the entire process of power systems. Reference [18]
proposed a carbon flow tracking method for power
systems based on a complex power distribution matrix,
which can accurately calculate the real-time carbon
emission distribution of the power system.

In the field of international research, multiple
institutions and scholars have proposed different
calculation methods for carbon emission factors. Based
on the time granularity, the EU strengthens the fairness
of cross-border carbon accounting through the CBAM
mechanism and produces relevant reports every quarter
[19]. The United States proposed the carbon balance
equation, which better considers the power transmission
between regions and the changes in carbon emissions at
different times [20]. Japan, on the other hand, calculates
the carbon emission factors for specific regions and
times based on the power generation and emission
factors of different power generation types, combined
with regional power demand [21]. The time granularity
of both is at the hour level.

Through literature research, it can be found that the
research focuses on Time-Sharing and Zonal Carbon
Emission Factor at home and abroad are different:
the core objective internationally is to improve the
calculation accuracy to reflect the spatio-temporal
differences, while in China, more emphasis is placed
on precisely calculating and analyzing carbon emission
factors in combination with the unique characteristics of
China’s power system operation and energy structure.
Therefore, this article summarizes the research progress
in regions such as the United States, the United
Kingdom, and the European Union, elaborates on the
development trends within China, and analyzes their
respective advantages and disadvantages. The aim
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Fig. 1. The research framework of this article.

is to summarize the relevant research both
internationally and domestically, hoping to provide
readers with a comprehensive and detailed development
status of the electro-carbon factor, offer theoretical
references for relevant departments and personnel, and
contribute to the realization of carbon reduction targets.
The research framework of this paper is shown in Fig. 1.

Theoretical Basis and Conceptual Analysis
of Time-Sharing and Zonal Carbon Emission Factor

The Basic Concept of the Carbon Emission Factor

The carbon emission factor refers to the amount of
carbon dioxide emissions generated in the process of
producing one unit of electricity, reflecting the carbon
emission intensity in the electricity production process
[22, 23]. The “carbon emission factor” is an important
indicator for measuring carbon emissions. Enterprises

Application scenarios and practical progress of TSZ-ECF

and governments can use the carbon emission factor
to assess the carbon emissions generated during power
transactions, calculate the carbon footprint, and provide
a basis for enterprises to adjust their emission reduction
plans. At the same time, it can reflect the drawbacks
of the energy structure and guide the direction for the
implementation of energy conservation and emission
reduction policies by the government [24, 25].
As a bridge connecting the electricity market and the
carbon market, the “carbon emission factor” is of great
significance in measuring and pricing carbon emissions
in electricity transactions [26].

Average Emissions Rates

The average factor, also known as Average
Emissions Rates (AER), is the ratio of total carbon
emissions to total electricity generation over a period
of time or a region, i.c., the total direct carbon dioxide
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(CO,) emissions from the electricity production sector
divided by the total electricity generation over a certain
period of time (usually 1 year) [27], usually expressed
in units of grams of carbon dioxide per kilowatt-hour
(CO,/(kWh)) [4].

The average factor is used to describe the average
level of emissions from all sources of generation in the
grid over a specific region and time period. This type
of indicator has attributional properties and requires
an equal apportionment of responsibility for emissions
from the electricity sector, ensuring that each electricity
user bears the same proportion of responsibility for
emissions. The average factor can be calculated both
historically, based on empirical data, and to predict
future grid conditions, and it is suitable for assessment
and analysis at any time period (e.g., annual, hourly
level) [28].

In China, the average factor is mainly used for
carbon accounting of enterprises participating in the
national carbon market trading, which can effectively
ensure fair trading among enterprises in different
regions. With the in-depth promotion of China’s carbon
market and unified power market construction, as
well as the gradual implementation of the European
Union carbon border adjustment mechanism, regional
power grids will strengthen the scheduling between
the regional power grids and will be converged, the
selection of the whole of China’s power grids carbon
emission factors for carbon accounting and carbon
verification is more advantageous [29]. Specifically, for
industries included in China’s carbon market, including
the power sector and the cement, steel, and electrolytic
aluminium industries to be included, enterprise carbon
accounting should be calculated using a uniform electric
carbon factor across China [30].

From an international perspective, in the United
States, the U.S. Environmental Protection Agency
(EPA) adopts the eGRID methodology in measuring
the electric carbon factor, which calculates the average
electric carbon factor by collecting data on power
generation and carbon emissions from power plants
across the country. The method’s visualisation page
presents statistical distributions including total carbon
emissions and carbon emission rates for each US state,
as well as fuel ratios for electricity generation, allowing
users to analyse and compare the environmental
performance of different power systems [4].

The average factor reflects the pattern of change in
greenhouse gas emissions over time and is widely used
because of its ease of calculation. However, average
factors are less accurate in estimating emissions due to
changes in demand [31], and the average factor also does
not reflect well the changes in emissions due to power
sector interventions [32]. In order to make up for the
shortcomings of the average factor and better monitor
the changes in carbon emissions, some scholars have
started to calculate the marginal emission factor.

Marginal Emission Factors

Marginal factors, also known as Marginal
Electricity Carbon Factors (MEF), are the additional
carbon emissions produced by the power system when
electricity generation is increased by one unit [33]. This
indicator describes the changes in carbon emissions due
to changes in electricity loads and is divided into short-
term marginal factors (SRMER) and long-term marginal
factors (LRMER). The general definition Equation is:

AEmissions

MEF = ————
AElectricity

Where: AEmissions indicates a change in CO, due to
a change in demand, AElectricity indicates the change
in power [34].

SRMER are used to characterise the impact of
changes in electricity loads on emissions, provided
that the grid structure (i.e., capital assets such as
generating units, transmission lines, etc.) is fixed. This
indicator reflects the impact of interventions on short-
term emissions from the grid by assessing the emission
characteristics of each type of generating unit for a given
group of generating units during a given period of time
when “marginal dispatch” (i.e., adjusting generation in
response to changes in load) occurs. Commonly used
sources of hourly short-term marginal emission rate data
include the U.S. Environmental Protection Agency’s
Avoided Emissions and Generation Tool (AVERT),
WattTime, Resurity, PowerMap, and the National
Renewable Energy Laboratory’s (NREL) Cambium.
The Marginal Emission Factor database developed by
the Center for Climate and Energy Decision Making at
Carnegie Mellon University provides data at a monthly-
hourly resolution.

LRMER is a measure of the impact of changes in
electricity load on emissions, which takes into account
the potential impact of load fluctuations on the structure
of the grid, and can be calculated through the capacity
expansion model for the power sector. The model
predicts whether the grid structure will be adjusted in
response to load changes. Long-term marginal factors
are mostly used to assess the carbon impact of new
buildings, heat pumps, and electric vehicles [35].

In general, both the average factor and the marginal
factor are the main tools for reflecting the intensity of
carbon emissions, and both reflect the current power
structure and operation of the power system, but
there are also differences between the two: Firstly, the
average factor is easy to calculate, with historical values
available, and is well suited to systematic analyses,
mainly for stock analyses. For example, based on an
average factor, it is possible to compare the magnitude
of carbon emissions from the electricity systems of two
countries. On the other hand, the marginal factor is
relatively complicated to calculate, mainly focusing on
the local, for the analysis of carbon emissions generated
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by incremental electricity, which can more accurately
reflect the carbon emission changes of the power
system in different time and space [36-38]. Secondly,
the average factor is suitable for comparing carbon
emission intensity over time, while the marginal factor
is generally used to compare the emission reduction
effect of new electricity use [39]. Thirdly, the marginal
factor is more responsive and accurate to changes in
grid demand than the average factor, and the use of the
average factor for analyses of changes in demand may
ignore the impact of specific generators, such as fossil-
fuel-fired power plants, which adjust to fluctuations in
demand, while hydroelectric or nuclear power plants,
which are base loads, remain unchanged, and whose
emission characteristics are different from those of the
average value [40, 41].

From the Average Factor to the Marginal Factor

Accurately calculating the electric carbon emission
factor for the power sector is critical to driving energy
savings and emission reductions in the sector. Marina
[42] et al. used regional data from the Italian market to
compare the widely used emission factor approach and
found that region-specific factors are superior to average
factors. Yi Jun et al. [43] analysed the international and
Chinese domestic grid average factor and found that
the average factor method is simple but not real-time
enough, and the method should be optimised in terms
of accounting period, accounting granularity, and green
power. Eelke et al. [44] combined emission data from
the Netherlands, Sweden, and France and found that
applying the annual average factor directly to the hourly
series would result in measurement errors, and that
seasonal, intra-day fluctuations would be ignored.

In general, the average factor method is easy to
calculate at the macro-accounting level, but it introduces
bias when assessing short-term emission reduction
measures, demand-side management, and other
immediate decisions. Because it cannot reflect spatial
and temporal differences, researchers have temporally
resolved the average factor and begun studying the
time-sharing and zonal carbon emission factor.

Time-Sharing and Zonal Carbon Emission Factor
Theoretical Basis of the Time-Sharing Granularity

The Time-Sharing characteristic of the carbon
emission factor refers to the fact that the carbon
emission factor changes with time and presents
different numerical values. Based on this characteristic,
the concept of time-varying carbon emission factor
was introduced. The time-varying carbon emission
factor refers to the carbon dioxide emission volume
corresponding to each unit of power generation,
reflecting the carbon emission differences of the power
system in the time dimension [45]. The source of the
Time-Sharing characteristics of the carbon emission

factor is as follows: Firstly, the topological structure
and power supply structure of the power grid exhibit
significant time-varying characteristics. The proportion
of power generation from various sources at different
times directly affects the carbon emission factor. For
instance, due to the influence of seasons and sunlight,
the proportion of hydropower increases during the rainy
season, which significantly reduces the carbon emission
factor. Photovoltaic power has a greater effect during the
day when the sunlight is strong, thereby influencing the
overall carbon emission factor [46]. Secondly, the time-
varying nature of electricity load will alter the system
dispatching methods, thereby indirectly affecting the
carbon emission factor. For instance, during periods
of high electricity demand, the system requires a large
amount of electricity and may resort to power generation
methods with higher carbon emissions, resulting in an
increase in the carbon emission factor. Additionally,
the Time-Sharing nature of the carbon emission factor
makes the scheduling policy of the electricity-carbon
system dependent on time, giving rise to numerous
studies on low-carbon economic scheduling strategies
[47-49].

Theoretical Foundation of Zonal Granularity

The zonal characteristics of the carbon emission
factor refer to the fact that the carbon emission factor
varies in different values as the space changes. Based on
the zonal characteristics of the carbon emission factor
and the different application scenarios, the carbon factor
can be divided into the national power grid carbon
emission factor, the regional power grid carbon emission
factor, and the provincial power grid carbon emission
factor [50, 51]. The reasons mainly include the following
aspects:

First, there are differences in energy structures
across various regions. The carbon emissions produced
by different fuels are also different. Moreover, factors
such as the size of the power plant and the intensity
of power generation load can also affect the carbon
emission factor. Therefore, the carbon emission factor
is influenced by regional variations [52]. For instance,
regarding the carbon emission factors of thermal
power units in different regions of China, those in the
northwest region are relatively higher. If we break it
down to specific provinces, the carbon emission factor
in Yunnan Province is higher than that in Beijing. As
the scale of the units increases, the carbon emission
intensity will show a decreasing trend. The higher the
power generation load of a unit, the greater its efficiency
will be, and the lower the carbon emission factor will be
[53].

Second, the calculation elements of carbon intensity
are missing. Due to the characteristics of timeliness
and efficiency of power transmission, the flow path of
electricity in the power grid is difficult to accurately
track, and the regional differences in the carbon emission
factor are greatly affected and vary significantly [54].
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Third, as the research on the electricity-carbon
market deepens, the carbon market and the electricity
market have developed into a coupled state where they
influence each other. In order to accurately purchase
sufficient carbon emission rights, enterprises need
to calculate their carbon emissions more accurately.
This results in the zonal characteristics of the carbon
emission factor having a more significant influence [4].

Core Connotations and Key Characteristics
of TSZ-ECF

The traditional electro-carbon factor mainly
takes years as the time unit and uses the average
electro-carbon factor as the emission situation of
each region, which has poor accuracy and pertinence.
The time-of-use and zonal electricity-carbon factor
refers to the amount of carbon dioxide emissions
per unit of electricity within a specific time period
and geographical area [30], which can reflect the
dynamic changes in the electricity-carbon factor over
the course of a year. This measurement indicator is
different from the traditional method of calculating the
electro-carbon factor and is more targeted. It can mainly
be summarized into the following four aspects (as
shown in Fig. 2):

1) Regionality: This method makes up for the
defect that average data is affected by extreme data.
By calculating local indicators by region, it can better
reflect the carbon emission characteristics of power
plants in different regions and enhance the pertinence of
the results [30].

2) Dynamics: This method produces different results
at different times, reflecting the changes in the system’s

Province ﬁl
i a m '
L

It makes up for the defect
that the average data is
affected by extreme data.

Different results are
produced at different times.

b

Correct and update the
system model in
a timely manner.

Calculate local indicators
by region.

Reflect the carbon emission
characteristics of power
plants in different regions.

Timely handling of errors.

Fig. 2. The key characteristics of the TSZ-ECF.

carbon emissions in real time. It can promptly correct
and update the system model, achieving timely handling
of errors [30].

3) Marginal nature: It can inform users how the
carbon emissions of the system change when they
use one more or one less kilowatt-hour of electricity.
Since this method can accurately produce the carbon
emissions of electricity at a specific moment, it can
calculate the additional carbon emission intensity (i.c.,
marginal electricity-carbon factor) generated per new
unit of electricity consumption [55].

4) Complexity: This method requires considering
the changes in different regions and times, taking into
account regional differences and the fluctuations in
electricity consumption at different times, to construct
a model that suits local conditions, and to conduct
risk prediction to deal with extreme situations, which
demands a certain degree of flexibility [55].

Materials and Methods
TSZ-ECF Accounting Methodology
Typical International Calculation Methods for TSZ-ECF

International methods for calculating TSZ-ECF
vary in temporal resolution, ranging from annual
averages to hourly intervals. Spatially, the granularity
of division extends from national, sub-regional, to
municipal levels. In terms of calculation content,
most methods focus on direct emissions from the
generation side, while some incorporate inter-regional
power transmission, imported electricity, green
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power/certificate deductions, or lifecycle indirect
emissions. The core objective is to improve accounting
accuracy by reflecting spatiotemporal variations, though
these methods commonly face challenges such as
high data requirements, computational complexity, or
insufficient timeliness.

(1) United States

The US relies on the eGRID all-source dataset
to construct time-sharing and zonal carbon balance
equations. It couples inter-regional electricity transfers
with time-varying generator emissions into a five-level
factor system (from power plant to sub-region), enabling
standardization of Scope 2 accounting. While its
precision is an advantage, this method simultaneously
exposes stringent demands for the availability,
timeliness, and computational capacity required to
handle high-frequency data.

The US employs a time-sharing and zonal carbon
balance equation that accounts for inter-regional
power transmission and temporal variations in carbon
emissions, enabling a more accurate reflection of actual
emission conditions [20].

f= xl(d+z Vii)- quy

Where: f, represents the carbon emissions generated
from electricity production in region i; x, is the grid
carbon emission factor for region #; d, is the electricity
consumption in region i; v, is the electricity exported
from region i to region £; u is the electricity imported
into region i from region j, x 'is the grid carbon emission
factor for region j.

The US EPA has established a comprehensive
dataset covering nearly all US power generation
sources, containing operational data (electricity output
and heat input) and emissions data (CO,, Hg, CH,, N,O,
NO_, PM, and sulfur oxides) for Electricity Generating
Units (EGUs). Through aggregation and calculation,
this data yields total system emissions and emission
rates at the power plant, state, Balancing Authority,
eGRID sub-region, NERC region, and national levels:

_ E mgrid
EFgen,grid_ E
grid

_ EFgen,gridecon

Emcon_
1 'Eloss%

_ EF gen,grid xE con xE loss%
E mcon,loss ™ 1-E
“loss%

Where: E Feen.grid is the generation-side grid-average
CO, emission factor; Emg” , and Eg”, , denote the direct
emissions from the generation side and the net electricity
fed into the grid, respectively; £ = and E_ represent

the carbon emissions and electricity consumption
on the user side, respectively; E and E are

mcon,loos loss%

the emissions associated with grid losses and the average
grid loss rate, respectively.

EGUs report hourly emissions and operational data to
the EPA within 30 days after each calendar quarter using
the Emissions Collection and Monitoring Plan System.
Enterprises typically use eGRID data for Scope 2
accounting. The EPA recommends using the eGRID
sub-region model for Scope 2 calculations. Estimating
Scope 2 emissions using eGRID sub-regional emission
rates more accurately reflects the regional emissions
associated with electricity consumption in specific areas.

By comprehensively analyzing various factors
and refining spatiotemporal dimensions, the US
methodology more accurately reflects actual grid
carbon emissions, providing reliable data support for
scientifically formulating emission reduction policies
and energy planning. By fully considering inter-
regional power transmission and emissions across all
stages, it effectively addresses complexity and meets
the carbon accounting needs of different regions
and market entities. Simultaneously, the EPA’s rules
standardize the accounting of carbon emissions from
corporate-purchased electricity, helping regulate carbon
management in the power market, encouraging emission
reduction measures, and promoting green development
in the power sector.

However, the US method demands high-quality data
that is often difficult to obtain, relying on extensive,
detailed data such as inter-regional power transmission
volumes, regional generation and consumption time-
series data, and direct emissions from the generation
side. Data collection channels are complex, and some
data may be missing, inaccurate, or outdated, increasing
the difficulty and cost of data compilation. Additionally,
the time-sharing and zonal carbon balance calculations
involve multiple variables and inter-regional data
interactions, while EPA’s rules incorporate multiple
formulas and stages, requiring high computational
capacity and expertise, making it challenging for
ordinary enterprises and institutions to independently
achieve precise accounting.

(2) United Kingdom

The UK constructs its grid carbon emission
factor using a “Direct + Import + Lifecycle” tripartite
framework. It quantifies international electricity
exchanges and Combined Heat and Power (CHP)
allocation via weighted averages, incorporates multi-
gas accounting (including CH, and N,O), and integrates
with the Climate Change Agreement (CCA). However,
its annualized averaging obscures intraday fluctuations
caused by renewable energy variability, fails to deduct
locally generated green electricity, lacks sufficient
spatiotemporal  resolution, and requires further
adaptation to accommodate high-penetration renewable
power systems.

The calculation of TSZ-ECF in the UK includes
various methods such as direct emissions, indirect
emissions, and combined heat and power (CHP), each
with different emphases and scopes [6]. For direct
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emissions, the basic grid carbon emission factor
(excluding imported electricity) represents the average
CO, emissions per kilowatt-hour of electricity generated
by the UK National Grid. The calculation formula is as
follows:

Where: E| is the grid carbon emission
factor excluding imported electricity, expressed
in kg CO2/kWh; E, is the CO, emissions from electricity
generation in the United Kingdom, expressed in kg;
E, is the electricity generated, expressed in kWh.

For the emission factor including imported
electricity, the UK accounts for net electricity imports
via interconnectors with Ireland, the Netherlands,
France, Belgium, and Norway. This calculation covers
direct CO,, CH,, and N,O emissions from UK power
plants and generator sets, as well as emissions from
imported electricity, but excludes emissions from fuel
production and transportation. The weighted average
emission factor is calculated as:

_ bt 2k (EsgxEey)
! Es+Y kEg,

Where: £, is the grid carbon emission
factor, including imported electricity, expressed
in kg CO/kWh; E, is the average CO, emission
factor for electricity generation in country k that
is net-exported to the United Kingdom, expressed
in kg CO/kWh; E, is the net electricity exported from
country k to the United Kingdom, expressed in kWh.

Indirect emissions include upstream carbon
emissions from fuel extraction, transportation, and
distribution. The UK applies a life-cycle assessment
(LCA) approach, but due to delays in updating well-
to-tank (WTT) coefficients, the timeliness of indirect
emission calculations is limited. For combined heat and
power (CHP), the UK uses the 1/3:2/3 DUKES method
to allocate emissions:

HE= / 2 EO)+HO <HO

2xTFI

— /x
(2XE0)+HO EO

Where: TFI is the total fuel input to the prime
mover; HO is the useful heat generated by the prime
mover; EO is the electricity (or the electrical equivalent
of mechanical energy) produced by the prime mover;
HE is the portion of the prime mover’s fuel allocated to
heat generation; £ is the portion of the prime mover’s
fuel allocated to electricity generation.

When calculating emission factors, the UK not only
considers carbon emissions from imported electricity
by obtaining emission coefficients from neighboring
countries (e.g., France, Norway) through international
cooperation and applying weighted calculations to assess
cross-border electricity impacts, but also separately
accounts for CH, and N,O emission factors. These are
integrated with the Climate Change Agreement (CCA)
to establish clear emission allocation rules for combined
heat and power (CHP). However, the UK’s use of
annual average emission factors fails to reflect intraday
variations in carbon intensity caused by renewable
energy fluctuations. Additionally, the calculation does
not deduct local green power generation (e.g., wind,
solar), thereby failing to capture the emission reduction
value of renewable energy.

Drawing on the UK’s weighted calculation method for
imported electricity and considering the characteristics
of China’s “West-to-East Power Transmission” initiative,
we can optimize cross-regional carbon emission
allocation mechanisms. By referencing the UK’s CCA
framework, we can promote the alignment of emission
allocation standards for distributed energy sources like
CHP with China’s domestic carbon market.

(3) European Union

The EU establishes a unified framework based on
the JRC multi-dimensional factor library (IPCC, LCA,
NEEFE), termed “Local Emissions—Green Power
Deduction—-Grid Loss Internalization”. It embeds
emission factors within the Carbon Border Adjustment
Mechanism (CBAM) to assess the embodied electricity
carbon in imported goods, aiming to prevent carbon
leakage. However, it currently overlooks electricity
exchanges between Member States, and Guarantee
of Origin (GO) updates lag, resulting in insufficient
timeliness. Consequently, its response to dynamic
carbon markets under high renewable penetration
remains relatively static.

The greenhouse gas emission factors in the EU are
periodically published by the Joint Research Centre
(JRC) of the European Commission. This emission
factor system comprises two categories: emission
factors for individual EU member states and aggregated
emission factors for the EU as a whole. Currently, the
EU does not account for electricity exchanges between
member states and includes carbon emissions from
transmission and distribution losses within the scope
of indirect user emissions. In practical applications of
emission factors, the EU encourages member states to
make appropriate adjustments based on local conditions,
such as renewable energy generation and certified green
electricity consumption [19].
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Where: EFg”. . is the grid-average emission factor,
expressed in kg CO,/kWh; E_ is the electricity
consumption on the user side, calculated as E,, minus
grid-loss electricity £, , expressed in kWh; £, and

local
E, ., are the local grid-average CO: emission factor and
the local user-side electricity consumption, respectively;
2E,.. and Y'C, are the electricity generated from local

green power sources and the certified green electricity

obtained, respectively, expressed in kWh; Crpurchased and
C,.... are the certified green electricity purchased locally

and sold, respectively, expressed in kWh.

Survey research reveals that the EU employs
a multidimensional approach (IPCC, LCA, NEEFE)
covering both direct and indirect CO, emissions.
It strengthens the fairness of cross-border carbon
accounting through the CBAM mechanism, calculating
emission factors to evaluate the indirect carbon
emissions from electricity embodied in imported goods,
thereby ensuring the effectiveness of EU climate policies
and preventing ‘“carbon leakage”. Simultaneously,
it supports carbon accounting for transnational
electricity transactions and refines the green electricity
deduction mechanism to ensure the reasonable allocation
of environmental attributes, thereby enhancing
accounting accuracy. Nevertheless, it inadequately
considers the impact of electricity exchanges between
Member States, and delays in updating green certificate
data affect timeliness. China could reference the EU’s
cross-regional carbon pricing mechanism to improve
green electricity accounting standards and promote
carbon-electricity market coordination.

(4) Australia

Australia divides its grid into seven major
regions based on state administrative boundaries.
Within its annual factor framework, it incorporates
inter-regional electricity transfers, forming
a “Generation—Import—Export” tripartite carbon balance
model to achieve dynamic reallocation of interstate
emission responsibilities. Its National Greenhouse and
Energy Reporting Act explicitly defines the traceability
rules for Scope 2 purchased electricity, supporting
national climate targets and energy efficiency reviews
for infrastructure projects. However, this method
imposes high demands on the accuracy of real-time
exchange data, entails significant integration costs, and
its dynamic update capability remains constrained by
the annual reporting cycle.

Australia calculates and publishes electricity average
emission factors corresponding to different geographical

boundaries. Essentially, it releases provincial or state-
level electricity average emission factors based on
administrative boundaries. Simultaneously, Australia
considers electricity exchanges between grids, where
the calculation of electricity average emission factors
for major grids incorporates inter-regional electricity
transfers [5].

Australia’s  National Greenhouse and Energy
Reporting Act categorizes purchased electricity
emissions into Scope 1 and Scope 2. The former refers
to direct emissions from facilities, while the Ilatter
covers greenhouse gas emissions resulting from a
facility’s consumption of purchased electricity, heat, and
steam that are not generated by the facility itself. The
emissions from purchased electricity equal the product of
electricity consumption and the corresponding emission
factor, with distinctions made based on the source of
purchased electricity: if the purchased electricity comes
from an Australian state or territory grid, the emission
factor is that of the corresponding major grid; if the
purchased electricity originates from other regions, the
emission factor is provided by the generator or based on
the Northern Territory emission factor.

Australia divides the nation into seven regions:
New South Wales and the Australian Capital Territory,
Victoria, Queensland, South Australia, the South West
Interconnected System of Western Australia, Tasmania,
and the Northern Territory. This division results in
seven major grid emission factors, which are updated
annually.

_ Emgrid
EFgridi E
grid
Ek . E. .
_ .grid i,grid
Emgrid_Emlocal+ Z ( E ><Emk)' 2 E ><Emi
T gen,k ; gen,i

E grid:E local +E k.grid -E igrid

Where: £ . E  and E are the direct power-
generation-side CO, emissions from the local region,
region k, and region i, respectively; £, . E . andE,
are the electricity generated within the local region, the
electricity imported into the local region from region
k, and the electricity exported from the local region to
region i, respectively; E,. and E, . are the electricity
generated in region k and region i, respectively.

The study of Australia’s approach to calculating
grid carbon emission factors reveals that it effectively
combines regional delineation with dynamic factors to
accurately reflect spatiotemporal variations. Additionally,
Australia’s collaboration among government, industry,
and academia enhances data transparency. However,
challenges remain in integrating electricity exchange
data across regions, and the dynamic model relies on
high-precision real-time data, resulting in elevated
costs. Australia’s electricity carbon emission factors are
primarily used to estimate emissions from the power
sector, supporting the formulation and assessment
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of national climate targets. Additionally, they are applied
in the carbon emission evaluations conducted during
energy efficiency reviews of infrastructure projects,
encouraging new projects to commit to using renewable
energy.

For China, the dynamic factor model could serve
as a reference to optimize regional accounting in line
with the characteristics of the “West-to-East Power
Transmission” initiative. Furthermore, strengthening
provincial-level data platforms would improve the
transparency of green electricity trading.

(5) Japan

Japan constructs a concise carbon intensity model
using a three-dimensional matrix (“Generation Type—
Region-Time Period”). Its differentiated emission
factor system is linked with a Green Certificate (Non-
Fossil Fuel Certificate, NFC) deduction mechanism,
ensuring fulfillment of renewable energy consumption
responsibilities while preventing double-counting of
environmental value. However, its focus is primarily
on the generation phase, neglecting transmission
and distribution losses and inter-regional exchanges,
resulting in a relatively narrow accounting boundary.
This approach holds significance for China in designing
a lightweight factor system that prevents double-
counting.

Japan employs a time- and region-specific carbon
emission factor calculation method. Based on the
electricity generation of different power sources and
their respective emission factors, combined with regional
electricity demand, it calculates carbon emission factors
for specific regions and time periods [21].

CF. - Z] EF}X Genj’l"t
b Demand,,

Where: CF, is the carbon emission factor for region
i at time ¢; EF, is the emission factor for generation type
J> Gen,, is the electricity generated by generation type j
in region / at time #; Demand,  is the electricity demand
in region 7 at time ¢.

Japan’s time-and region-specific carbon emission
factors primarily enable enterprises holding NFCs to
use them for offsetting the indirect carbon emissions
from purchased electricity, thereby promoting
renewable energy consumption. Secondly, electricity
retailers bear renewable energy consumption obligations
and use adjusted emission factors to calculate carbon
emissions, ensuring environmental attributes are
not double-counted. Its calculation methodology
is relatively simpler compared to other countries,
requiring fewer data types and involving a more
straightforward computational process. Subdivision by
region and time period allows it to reflect differences
in electricity-related carbon emissions across different
regions and times, offering a degree of specificity.
Furthermore, the algorithm adequately considers
Japan’s diversified energy structure, distinguishing

and calculating emissions from different generation
types.

However, this method has limitations. It primarily
focuses on emissions from power generation, with
insufficient consideration of emissions from other stages
of the power system (e.g., transmission and distribution),
potentially leading to incomplete accounting results. It
also lacks inter-regional coordination, failing to fully
account for the impact of cross-regional electricity
exchanges on emission factors. In cases where regional
power grids are closely interconnected, this may affect
the accuracy of the accounting results.

While ensuring accounting accuracy, China could
draw lessons from the simplicity of Japan’s algorithm
to optimize the design of its own grid carbon emission
factor calculation, thereby reducing computational costs
and implementation complexity. Additionally, China
could reference Japan’s practice of categorizing emission
factors into base emission factors and adjustment
emission factors, ensuring that only adjustment emission
factors are used to calculate emissions from purchased
electricity to avoid double-counting environmental
benefits.

Comparative Analysis of International
Calculation Methods

Significant differences exist among countries in
terms of temporal-spatial granularity, model structure,
data foundation, and validation depth, resulting
in carbon intensity for the same kilowatt-hour of
electricity potentially differing by more than 30% due
to methodological variations. This severely undermines
the basis for international comparisons and policy
benchmarking. By constructing a systematic comparison
framework (Table 1) that encompasses dimensions such
as time-space resolution, computational complexity,
data requirements, grid loss, cross-border adjustments,
and green power deduction mechanisms, the trade-off
relationships of different methods within the “accuracy-
cost-feasibility” triangle are quantitatively revealed.

Using this indicator framework, the performance
differences of TSZ-ECF methods across countries are
compared. The results are shown in Table 2 and Table 3.

Table 3 quantifies the TSZ-ECF methods of various
countries across seven dimensions: time resolution,
spatial ~ granularity, data demand, computational
complexity, model type, grid loss/cross-border
adjustment, and green power deduction mechanism.
The results clearly reveal two trade-off chains. The first
is the “high-frequency + high-spatial” route represented
by the USA, where At =5 and Ax = 4 enable capturing
intraday fluctuations of renewable energy, but come
with the high thresholds of D =4 and C = 3. The second
is the “low-frequency + lightweight” route typified by
Japan, achieving At = 5 while keeping C = 1, relying
on simplified matrices and single-region boundaries,
but sacrificing the completeness of T and G. The EU
and UK enhance fairness within a static factor
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Table 1. TSZ-ECF Method Comparative Analysis Framework.

Dimension Quantification Definition and Grading
Symbol
Time Resolution At Annual = 1, Quarterly =2, Monthly =3, Daily =4, Hourly =5,
Minutely = 6
. . National = 1, State/Province =2, BA/ISO = 3, Sub-region = 4,
Spatial Resolution Ax Plant-level = 5, Unit-level = 6
Data Requirement Intensity D Low = 1, Medium = 2, High = 3, Very High =4
Computational Complexity C O(1)=1,0(n)=2,0(n? =3,0(n*)=4,>0(n*) =5
Model Type M Average = 1, Marginal = 2, Traceability = 3, Hybrid = 4
Cross-border/Grid Loss Adjustment T None = 0, Grid Loss = 1, Cross-border = 2, Both Combined = 3
Green Power Deduction Mechanism G None = 0, Annual Deductlon =1, .HOLll‘ly Deduction = 2,
Real-time Deduction = 3

Table 2. Comparative Results of International Representative TSZ-ECF Methods.

. Green Power/ .
CounFry / Temporal Spatlgl Certificate Deduction Calculation Advantages Disadvantages
Region Resolution Resolution Method
Approach
Adjusts emission da taifslglt)ime High real-time Inter-sub-regional
United Hourly (EIA) 26 sub-regions | factors with RECs & sharin ’ and resolution; transfers not fully
States [20] Y (EPA) green-power trades, sonal cirbon- fine regional | captured; REC updates
but data updates lag . breakdown delayed
balance equation
. . Coarse temporal
United Annual National emﬁgg(l)llitz;nﬂgzg;l ts: Combines direct | Comprehensive | granularity; domestic
Kingdom averace (including does not deduct ? and indirect data (imports green power not
[6] & imports . emissions included deducted; WTT factors
domestic green power
& P updated slowly
Encourages Member | (LCA)IPCC Cross-border
. States to correct guidelines; Holistic, covers | electricity exchanges
Eu.mpean Quarterly EU-wide and factors via RES Life-Cycle full life-cycle not fully captured;
Union [19] (CBAM) Member States . .. .
generation & GO/ Assessment emissions GO/REC deductions
REC trading (LCA) voluntary
T . Clear regional
. Annual . . Dlstmgulshe.s power | Dynarr.nc division; Limited real-time data;
Australia . 7 main grid sources for imports; | inter-regional . .
(dynamic . . accounts dynamic methods still
[5] . regions incorporates green- exchange . .
pilots) ; for dynamic immature
power trade data calculation
exchanges
Separate baseline Multi-energy
. system Granular down L .
Prefecture-level & adjustmen.t coupling; to prefecture; High 1mp1e_mentat10n
Japan [21] | Hourly (Tokyo) factors to avoid et . ? complexity; data
(e.g., Tokyo) . dynamic avoids double- . .
double-counting of simulation and countin acquisition difficult
environmental value . &
forecasting

Table 3. Quantitative Comparison of Performance Dimensions for International Representative TSZ-ECF Methods.

Country/Region At Ax D C M T G
UsS 5 4 4 3 2 1 1

UK 1 2 3 2 1 2 0

EU 2 2 3 2 2 2 2
Australia 1 3 2 2 1 2 1
Japan 5 3 2 1 1 0 2
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framework through cross-border adjustments (T = 2),
yet struggle to respond to spot market rhythms due to
At<2; Australia introduces dynamic terms for interstate
exchanges, but the annual update cycle lowers the
overall response speed.

In summary, if the goal is implementation within
China’s power grid characterized by high renewable
penetration, inter-provincial exchanges, and a real-
time market, a compromise must be sought between
“US-level spatiotemporal precision” and “Japan-level
computational burden”. That is, maintaining At>5, Ax>3,
while simultaneously compressing C to 2, elevating T
to 2 (hourly deduction), is necessary to achieve an
operable balance among accuracy, cost, and policy
adaptability.

Current Time-and-Region Specific
TSZ-ECF Calculation Methods in China

China’s approach to calculating time-and-region
specific TSZ-ECF primarily focuses on integrating
the unique characteristics of its power system operation
and energy structure to achieve precise computation
and analysis of carbon emission factors. Currently,
the main methods for calculating these factors include:
the proportional sharing carbon flow tracing method,
the power distribution carbon flow tracing method,
and the complex power distribution carbon flow tracing
method.

The Proportional Sharing Carbon Flow Tracing
Method uses active power flow as the sole variable.
It assumes that nodal inflow power is uniformly
distributed to outflow lines proportionally to incoming
lines. This approach features low computational
burden and intuitive results, making it best suited for
scenarios requiring rapid carbon emission responsibility
determination with low sensitivity to reactive power.
Typical applications include provincial grid inter-
provincial transmission carbon allocation, the State
Grid’s “Carbon Meter” system, and minute-level
updated low-carbon scheduling for EV charging or
industrial loads using nodal carbon potential as signals.

The Power Distribution Carbon Flow Tracing
Method employs power distribution factors to
characterize the active power transfer relationship
between sources and loads. It explicitly identifies
generation-side carbon emissions corresponding to
electricity consumption by enterprises or regions within
a specific period. Consequently, it is widely applied in
corporate product carbon footprint accounting, green
manufacturing certification, spatial precision correction
of provincial grid emission factors, and carbon label
generation for green electricity consumption. Its core
advantage lies in delivering physically transparent
carbon emission traceability without significantly
increasing computational load.

The Complex Power Distribution Carbon Flow
Tracing Method concurrently accounts for both active
and reactive power flows, employing complex power

distribution matrices for carbon flow computation.
While theoretically more rigorous, due to its capability
to capture reactive power support effects on carbon
distribution, this method necessitates inversion of
the full-network complex power matrix, resulting
in substantially increased computational overhead.
Its principal applications encompass: fine-grained
carbon emission analysis in scenarios characterized
by significant reactive power flows such as long-
distance heavily loaded transmission lines and highly
inductive load areas; research on carbon property rights
demarcation between generation and consumption
entities; and utilization as a reference benchmark
in academic investigations validating simplified
methodologies.

Proportional Sharing Carbon Flow Tracing Method

Yang Yi et al. proposed a direct carbon flow tracing
method based on carbon emission flow, which allocates
generation-side carbon emissions to the demand side
using the proportional sharing principle, thereby
avoiding negative carbon emission issues caused by
complex power calculations. This method first computes
the system’s carbon flow distribution and then directly
traces the carbon emission path according to power
flow direction, achieving shared carbon emission
responsibility between generation and demand sides
[56].

Carbon Flow Calculation Basis. Carbon emission
flow depends on active power flow, with nodal carbon
intensity defined as the weighted average carbon flow
density of incoming power:

ZZN+ Ri

e
! ZN P;

Where: R, is the carbon flow rate of the branch
(t CO,/h); P, is the active power of the branch (MW).

Tracing logic. Based on the proportional-sharing
principle, the carbon responsibility of a load R, is
determined by the nodal carbon intensity e, and the load
power P, :

RLk:ekXPLk

Grid Loss Allocation. Grid loss-related carbon
emissions are allocated proportionally between
generation and demand sides to ensure fairness.

This method directly traces carbon flow paths,
avoiding negative carbon emission issues from complex
power calculations, with clear physical meaning.
It innovatively proposes a shared responsibility
mechanism between generation and demand sides,
particularly through proportional bidirectional allocation
of grid loss carbon emissions, enhancing fairness in
responsibility assignment. The method is suitable for
lossy network scenarios and demonstrates relatively
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high computational efficiency.

However, this method does not explicitly consider
the impact of reactive power on grid loss distribution,
resulting in insufficient dynamic adaptability in high
renewable energy penetration scenarios. The real-time
computation relies on high-precision power flow data,
leading to substantial data acquisition costs in practical
applications.  Furthermore, cross-regional carbon
flow tracing still depends on the proportional sharing
assumption without incorporating electricity market
mechanisms for optimization.

Power Distribution Carbon Flow Tracing Method

Wang Chaoqun proposed a carbon emission flow
calculation method for power systems based on the
power flow distribution matrix, as shown in Fig. 3.
By constructing a power flow distribution matrix,
this method allocates generation power to nodal loads,
branch power flows, and network losses, addressing
the limitations of existing methods in power and
catbon flow allocation. The matrix establishes
generation-load power mapping relationships and
incorporates thermal power carbon emission models
to achieve carbon flow allocation in lossy networks,
enabling traceability of carbon emission flows from
generation to load [15].

The power flow distribution matrix can be expressed
as:

1, =
(Au)jlz -le/Pl’ lEU]
0, other

Obtain the load
of each node,
generator
output, network
topolegy and
related
technical
parameters at
the current

Allocate the power
generation to the
loads of each node,
the power of each
branch and the
losses

Real-time Exchange Power
data trend generation
acquisition calculation decomposition

The power and
active power
loss of each
branch are
cobtained by
using the system
power flow
calculation

Where: P, is the active power flowing from node i to
node j (kW); P, is the net active-power injection at node
i (kW) U, is the set of neighboring nodes that supply
node ;.

The load carbon emission responsibility is calculated

as:
P Ly 17, -1
= (el er

g

Where: P, is the active power of load k (kW); P, is
the total active-power injection at the node where load
k is located (kW); EGg is the carbon emission of power
source g (kg CO/h).

This method overcomes lossless network limitations
by explicitly addressing loss allocation in lossy grids
through the power flow distribution matrix, significantly
improving calculation accuracy in complex networks.
It establishes precise generation-load power mapping
for accurate load-side carbon emission traceability and
incorporates thermal unit operating states in dynamic
carbon emission modeling to enhance source-load
carbon correlation rationality. However, the matrix
inversion operation has high computational complexity,
resulting in low real-time calculation efficiency for large-
scale systems. The model neglects the reactive power’s
impact on loss distribution, reducing accuracy with high
renewable penetration. Renewable unit carbon intensity
uses simplified equivalent models that inadequately
reflect spatiotemporal variations.

Zuo Weilin abstracted the power system as
a weighted directed graph using graph theory concepts.
The proposed carbon flow network distribution algorithm
and the path tracing algorithm employ breadth-first

Allocate the
carbon emissions
of the unit to the
loads of each node,
the power of each
branch and the
lossas

Carbon
emission
decomposit
ion of the
unit

Modeling of
carbon
emissions of
the unit

Calculation
of carbon
flow
indicators

Calculate the
carbon flow
density of the
branches and the
carbon potential of
the nodes

Calenlate the real-
time carbon
emiszion intensity
of each unit

Fig. 3. Carbon emission flow calculation method for power systems based on power flow distribution matrix.
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search (BFS) for hierarchical carbon flow distribution
and depth-first search (DFS) for tracing source-load
path contributions, solving system-wide carbon flow
distribution and path analysis problems. This provides
data support for higher spatiotemporal resolution TSZ-
ECF calculation and load-side low-carbon response [16].

Network distribution algorithm. BFS calculates nodal
carbon potential layer by layer, with branch carbon flow
rate expressed as:

Rijzei XPU

Where: e, is the carbon intensity at the sending-end
node i of the branch (kg CO,/kWh); P, is the active
power flowing from branch i to branch j (kW).

Path tracing algorithm: DFS identifies all
feasible generation-load paths, with path carbon flow
decomposition:

Rpath:Eg><Ppal,‘h>< | | Omn
(m, m)path

Where: E, is the carbon-emission intensity of the
generation node g (kg CO,/kWh); P is the active
power transmitted along the path (kW); a  is the
carbon-flow allocation coefficient for the branch from m
to n.

This innovative graph-based approach (BFS/DFS)
enables visual carbon flow path tracing, clearly showing
source-to-load transmission links and improving
interpretability. It avoids high-dimensional matrix
operations, offering better computational efficiency than
matrix methods, and handles lossy networks through
equivalent loss processing for complex grid topologies.
However, DFS may cause path combination explosions
in very large systems, limiting practical application.
Network loss emissions are oversimplified as virtual
loads allocated entirely to starting nodes without
distinguishing generator-consumer responsibilities. The
lack of dynamic power flow models hinders response

Statistics on direct carbon
emissions from power plants

to minute-level carbon intensity fluctuations with high
renewable penetration.

Zhou Tianrui et al. developed a comprehensive
carbon accounting method (Fig. 4) and implementation
system (Fig. 5) based on power system carbon emission
flow theory. It calculates direct emissions from source-
side fuel consumption data and allocates indirect
emissions to the grid and load sides using power flow
data with “carbon flow labeling” technology. The real-
time, granular measurement approach enables “minute-
level” and “user-level” carbon emission tracking.

Nodal carbon potential (load-side emission intensity
per unit electricity):

21‘1\# R;

e
8 Zl’N+Pi

Where: R, is the carbon emission of power source
i (kg CO,/h), P, is the active-power output of power

source i (kW).

Branch carbon-flow density, characterizing the
carbon emission per unit of electricity transmitted along
a branch, is expressed as:

R

P

Where: R is the carbon flow rate of the branch (kg
COz/h); P is the active power of the branch (kW).

Lossless network assumption: Carbon flows
are linearly allocated along power flow directions,
neglecting network losses.

This foundational work established the carbon
emission flow theory framework, defining key concepts
like nodal carbon potential and branch carbon flow
density with clear physical interpretations, creating a
unified paradigm for subsequent research. The nodal
carbon potential directly reflects real-time carbon
intensity of user-side consumption, supporting low-
carbon electricity usage analysis. However, the lossless
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factors for power generation
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network losses

Carbon information
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on the load side
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Fig. 4. Schematic diagram of the power system comprehensive carbon accounting system.
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Fig. 5. Comprehensive carbon accounting method and implementation system based on the power system carbon emission flow theory.

network assumption introduces allocation errors from
transmission losses, limiting practical applicability.
Static power flow models cannot capture minute-level
dynamic impacts from renewable fluctuations. The
framework lacks mechanisms for tracing cross-regional
power exchanges, hindering multi-grid collaborative
accounting.

Complex Power Distribution Carbon
Flow Tracking Method

Yan Limei et al. proposed a carbon flow tracing
method based on a complex power distribution matrix,
as shown in Fig. 6, which combines active and reactive
power in power systems to more accurately analyze the
distribution of carbon emission flows in lossy networks.
This method achieves precise tracing of carbon flows in
power grids and clearly identifies the carbon emission
sources of different loads, branches, and network losses
[18].

The complex power distribution matrix is defined as:

AS:SG

Where: 4 is the complex-power distribution matrix;
S is the nodal complex-power column vector (kVA); S,
is the generator-injected complex-power column vector
(kVA).

Matrix elements are defined as:

1 i
S ij .
Ay = Jed;
J
0 other

Where: S‘l./. is the complex power flowing from branch
i to branch j; ¢, is the set of upstream nodes with active
power supplying node i.

The load carbon flow rate is expressed as:

S; .
Cux=Re |~ xe{xA" xdiag(Sg) | *cq

k

Where: S, is the complex power of load & (kVA); S,
is the total complex power at node k; c, is the carbon
emission intensity of the generators.

The branch carbon flow rate is expressed as:

Sij Ty 4-1 s i )
CyRe | < el <A diag(S5) | e

Where: S,y is the corpplex power flowing from
branch i to branch j (kVA); Sj is the total complex power
at the receiving-end node j (kVA).

The network loss carbon flow rate is decomposed as:

A
ij,loss™ 5 2 ij,loss
Pl-j+Ql.j
2
i

2 ><Cij,loss

ij,lossz o)
Pl-j+Ql.j

Where: C, is the total carbon-flow rate attributable
to losses on branch i-j (t/h); P, is the active power
of the branch (MW); 0, is the reactive power of the
branch (Mvar); C? 105 18 the active-power component of
the loss carbon-flow rate (t/h); CQWm is the reactive-
power component of the loss carbon-flow rate (t/h).
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The node carbon intensity calculation:

e =—
7 Re(S))

Where: 3, AC,-,- is the sum of the branch carbon-flow
rates enteringjnode J (t/h), C. is the carbon-flow rate
from the generator located at node J (t/h); Re(Sj) is the
total active power at node j (MW).

This method explicitly handles loss allocation
through the complex power distribution matrix,
overcoming lossy network limitations and significantly
improving carbon flow calculation accuracy. It is the
first to quantify reactive power carbon responsibility
based on active-reactive coupling relationships, clearly
revealing reactive power’s impact on carbon emissions
and providing a basis for carbon reduction through
reactive power compensation. By incorporating
historical data of thermal units to construct dynamic
coal consumption models, it better reflects actual
operations compared to Wang Chaoqun’s static model.

Multi-power power flow
tracking

Load power tracking

However, the complex power matrix inversion has
high computational complexity, resulting in low real-
time calculation efficiency for large-scale systems.
The assumption that complex power flows in the same
direction as active power doesn’t consider bidirectional
power flow scenarios with renewable energy, and the
decomposition of loss carbon emissions lacks validation
for cross-voltage-level applicability. The method has
limited engineering applicability, lacking cross-regional
carbon flow tracing mechanisms, and the complete
allocation of reactive power carbon responsibility to
starting nodes may be controversial.

Table 4 systematically catalogs the core
characteristics of five predominant carbon flow tracing
approaches developed by Chinese research teams. This
comparative analysis examines four critical dimensions:
originators, theoretical foundations, technical merits,
and practical constraints. The framework reveals
inherent trade-offs among computational efficiency,
physical accuracy, and engineering applicability,
thereby establishing a structured reference framework
for context-optimized method selection.

System carbon flow
tracking

i l Provide i i
! ' data ! :
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emissions of network losses, conducted on the system
different emission reduction
methods are adopted for the Based on the carbon flow rate of
branches to lower the carbon network loss in power flow tracking
emission level of the system and the coupling relationship
between active and reactive power
of branches, the carbon emissions
End < of network loss are divided into two

parts

Fig. 6. Carbon flow tracking method based on a complex power distribution matrix.
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Table 4. Comparison table of each method.

contribution analysis

Method Proposer(s) Core Principle Advantages Disadvantages
Proportional Direct carbon-.ﬂo‘w tracing based Avoids negative-carbon- ..
. on carbon-emission-flow theory; . . Does not explicitly account
Sharing Carbon . . . . emission artifacts that can . .
. Yang Yietal. | allocates generation-side emissions . for the influence of reactive
Flow Tracing . . . arise from complex-power .
to demand side via the proportional- : power on loss allocation
Method [46] . . calculations
sharing principle
Power Uses a power-flow distribution Overcomes the lossless- Matrix-inversion
Distribution Wang Chaoqun matrix to apportion generation output network assumption; complexity is high,
Carbon Flow ge tal q to nodal loads, branch flows, and explicitly allocates loss- limiting real-time
Tracing Method ’ network losses, thereby calculating | related carbon emissions in | performance in large-scale
[15] carbon flows. lossy grids systems
Carbon-Flow Represents.the power sy'stern asa . | DFS can suffer from path-
Network weighted directed graph; employs | Novel use of graph-theoretic combinatorial explosion
e Zuo Weilin Breadth-First Search (BFS) and algorithms (BFS/DFS) .
Distribution . . . in ultra-large systems,
. et al. Depth-First Search (DFS) for layered | enables visual path tracing - . .
Algorithm R . s constraining engineering
carbon-flow distribution and path | and enhances interpretability T
[16] practicality

Whole-Chain
Carbon

Zhou Tianrui

Integrates carbon-flow labeling with
carbon-emission-flow theory to
allocate emissions to both network

Pioneered the carbon-
emission-flow framework for
power systems; introduced

Relies on lossless-network
assumption; ignores
carbon misallocation

. et al. and demand sides, achieving key concepts such as nodal caused by transmission
Accounting [53] . .. . . L .
indirect-emission traceability and carbon potential and branch | losses, limiting practical
quantification carbon-flow density applicability
.. Still based on lossless-
Explicitly allocates loss- .
Complex power e o . network assumption;
A Utilizes a complex-power related emissions via the .
distribution - C . . . ignores carbon
Yan Limei distribution matrix that incorporates complex-power matrix, . .
carbon flow . . . misallocation from
. et al. both active and reactive power to overcoming the lossless- .
tracking method . . . oo transmission losses,
achieve precise carbon-flow tracking network limitation and . .
[18] reducing practical

improving accuracy

applicability

Application Scenarios and Practical
Progress of TSZ-ECF

TSZ-ECF has been implemented in five domains
both domestically and internationally: electricity market
mechanism design, user-side carbon management,
grid planning and operation, policy formulation and
assessment, and platform development; its core value
lies in characterizing electricity-carbon co-fluctuation
with high spatiotemporal resolution, thereby enabling
carbon-electricity price linkage, precise matching
of green electricity entitlements, collaborative
optimization of carbon-cost load management, low-
carbon dispatch, and refined allocation of carbon tax/
allowances, thus driving continuous improvement
of supporting technologies including data platforms,
forecasting systems, and blockchain-based traceability.

Design of Electricity Market Mechanism

TSZ-ECF reconstructs the power market mechanism
through innovative carbon-electricity price linkage
mechanisms and precise matching of green electricity
environmental rights and interests.

In the innovative domain of carbon-electricity
price coupling, the minute-level volatility of renewable

generation causes the marginal unit’s carbon intensity
to vary at sub-hourly scales. This spatiotemporal
heterogeneity of carbon cost can only be borne
by TSZ-ECF. Empirical evidence from Zhu et al. [57]
indicates that carbon price signals instantaneously
reshape both the clearing price and the awarded energy
of generators in the electricity market. Using a CGE
model, Zhang et al. [58] demonstrate that annual-
average factors cannot capture renewable fluctuations,
severely constraining the effectiveness of the coupling
mechanism. Li et al. [59] further reveal, via a dynamic
pass-through model, that the pass-through efficiency
declines by 40 % when wind penetration exceeds 30
%, thereby achieving an intraday-scale breakthrough in
carbon-electricity linkage.

Regarding the matching of green-electricity
environmental attributes, TSZ-ECF precisely
quantifies the carbon-abatement contribution of

green power at specific times and locations, resolving
the environmental-attribute decoupling inherent in
fixed green-certificate schemes. Although Zhang et
al’s virtual-power-plant model enables green-power
trading, it triggers double counting of environmental
attributes. Li et al. [60] employ a bi-level game-theoretic
model to show that the market-power imbalance
between renewable and thermal generators hinders
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load balancing for large consumers. Wang et al. [61]
implement atomic bundling of green certificates via
consortium-blockchain smart contracts, providing a
technological cornerstone for precise attribute matching.
In response to the wave of defaults in European PPAs
driven by TSZ-ECF volatility, Guo et al. [62] propose
a “green-certificate carbon-quota swap” mechanism
that successfully recalibrates dynamic environmental
entitlements, ultimately establishing a volatility-resilient
system for green-power attribute matching.

At the international level, energy regulatory bodies in
regions such as the European Union and the United States
are actively advancing the calculation and publication
mechanisms for high-spatiotemporal-resolution
electricity-carbon emission factors. Presently, official
energy agencies across numerous developed countries
and regions have successively released hourly-level and
even minute-level temporospatial electricity-carbon
emission factors. China has also undertaken proactive
measures in this domain, having officially published the
2021 and 2022 electricity CO, emission factors as well
as the 2023 electricity carbon footprint factor. Jiangsu
Dual-Creation Center provides comprehensive support
to the provincial grid company in developing electricity-
carbon factor calculation methodologies, benchmarking
against international frontiers. Leveraging time-of-
use/region/voltage-level power calculation models
and real-time metering data covering generation-grid-
demand full-chain processes, the center has established
a granular and traceable electricity-carbon factor
database across temporal, regional, and voltage-level
dimensions. This achievement enables high-precision
accounting, traceability, and verifiability of power
carbon emissions.

User-Side Carbon Management
and Decision-Making

The user-side application focuses on three core
scenarios, namely high-precision carbon footprint
dynamic accounting, load-carbon cost synergistic
optimisation, and intelligent decision-making for green
power procurement.

Carbon footprint dynamic accounting needs to
reflect the spatial and temporal distribution differences
of grid currents, and TSZ-ECF can penetrate the fuzzy
boundary of the regional average factor. Zhou et al.
pioneered the theory of “carbon flow” to achieve hourly
mapping of carbon intensity [63], and Li et al. established
a matching model for power purchase paths [64].
The traditional framework of WRI leads to
homogenisation of carbon footprints due to the regional
average factor, and Zhu et al. [56] developed the coupled
framework of LCA-Carbon flow to invert carbon
emissions through coal consumption, which can be
used to estimate carbon emissions with accuracy and
precision in the context of data limitations up to 90%,
providing a universal solution for dynamic accounting
[57].

Load-carbon cost co-optimization hinges on the
sub-hourly responsiveness of the power system’s
carbon intensity — an attribute that constitutes the core
advantage of TSZ-ECF. Khan et al. [65] demonstrate
that shifting 10% of industrial demand into high-wind
hours reduces aggregate emissions by 5%. Valenzuela
et al. [66] employ minute-level carbon-price signals to
enable dynamic load modulation at Google data centers
yet omit the carbon cost of reactive power. Wang et al.
[67] integrate life-cycle assessment (LCA) with carbon
trading in an integrated energy system, achieving
an additional 3.4% abatement through ‘“electricity-
hydrogen-heat” co-supply. Li et al. [68] propose
a “carbon potential voltage” co-optimization model that
attributes a further 2% emission reduction to reactive-
power compensation, thereby extending load-carbon
cost optimization to generation, transmission, and
consumption.

Intelligent green-power procurement mandates
real-time tracking of the actual carbon intensity of
renewable electricity, a requirement that TSZ-ECF
fulfills by disentangling the coupled effects of resource
endowments and transmission paths. Levasseur et al.
[69] reveal a 300% disparity in hydropower carbon
intensity between dry and wet seasons, overturning
the uniform-value premise of green certificates. Bie et
al. [70] design a “contract path carbon factor” model
that reduces corporate procurement emissions by
12%, embedding power-flow tracing within green-
power trading to allow buyers to select the lowest-
carbon supplier based on actual flows. Li et al. [71]
compress green-power verification latency to under
five seconds via zero-knowledge proofs, delivering
a key breakthrough for second-scale intelligent decision-
making.

Internationally, WattTime in the United States
provides temporal-regional marginal electricity-carbon
emission factors, enabling users to monitor power grid
carbon emissions in real-time and thereby select cleaner,
low-carbon electricity resources. Concurrently, in
certain UK regions, temporal-regional electricity-carbon
emission factors guide EV users to charge during periods
of lower carbon emissions. Smart charging systems
automatically adjust EV charging schedules based on
dynamic grid carbon emission factors, prioritizing time
slots with higher renewable energy generation shares to
reduce EV carbon footprints [4].

Domestically, temporal-regional electricity-
carbon emission factors assist EV users and charging
infrastructure operators in optimizing charging time/
location planning. Users may select low-carbon-
emission periods and regions for charging based on
emission factor fluctuations, reducing their EVs’
carbon footprints. Simultaneously, operators leverage
emission factor dynamics to optimize charging facility
deployment and operational strategies, enhancing
energy utilization efficiency [72]. In photovoltaic module
manufacturing, these factors enable high-precision
accounting of production-process carbon emissions,
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supporting enterprises in optimizing production
schedules to lower carbon emissions.

Grid Planning, Operation, and Dispatch

Grid-side applications revolve around the three
dimensions of low-carbon dispatch strategy optimisation,
new energy consumption benefit assessment, and
carbon-reducing oriented investment decision-making.

Low-carbon dispatching requires capturing the
switching effect of nodal marginal units, a task for
which TSZ-ECF quantifies the transmission of carbon
emissions through grid topology. Wang et al. [67] base
their dispatch on nodal average carbon potential and
therefore do not represent this switching effect. Wei et
al. [73] innovatively define a nodal marginal carbon
emission factor and reveal that the photovoltaic benefit
in the Yangtze River Delta is 9% higher than in Gansu,
thereby initiating refined scheduling strategies. Shi et
al. [74] couple a line-loss model and demonstrate that
5% of storage capacity is required to offset network-loss
deviations, further improving dispatch accuracy.

Evaluating the carbon-mitigation benefits of
renewable integration necessitates ex-ante assessment of
the carbon lock-in risk associated with interprovincial
transmission; TSZ-ECF disentangles the dynamic
coupling between power flows and carbon flows.
The Energy Foundation does not quantify such risk,
whereas the State Grid Research Institute applies
a “carbon-flow—power-flow” model and projects that the
carbon benefit of the Shaanxi-Wuhan HVDC corridor
will decline by 34% by 2030, uncovering the long-term
evolution of renewable-integration risk.

Carbon-oriented investment decisions demand
precise comparison of technological pathways;
TSZ-ECF decomposes the per-kWh carbon-abatement
cost differences across grid segments. The CSG
Research Institute constructs a “carbon-benefit
investment” price-ratio model and shows that expanding
the distribution network achieves a per-kWh abatement
cost only one-fifth that of ultra-high-voltage options,
providing quantitative grounds for resolving the
imbalance in backbone-grid investment. Shi et al.’s [74]
campus microgrid study further indicates that storage
investment can cumulatively reduce Scope 2 emissions
by 12% percent over a decade.

Internationally, in 2022, the US Congress legislatively
mandated the U.S. Energy Information Administration
(ETIA) to publish hourly-level average and marginal
carbon emission factors, providing foundational data for
product carbon footprint accounting. Concurrently, the
UK National Grid collaborates with research institutions
to forecast carbon intensity trends across 14 regional
zones at 30-minute temporal resolution with 96-hour
lead times. Furthermore, the European Union, jointly
with Japan, Canada, and the US, promotes establishing
an hourly electricity traceability mechanism and
researches reducing temporal granularity to 15-minute
levels to align with energy spot market clearing times.

The UK National Grid’s forecasting initiative
delivers high-precision carbon emission predictions
for grid dispatch, facilitating priority scheduling
of renewable energy during low-carbon periods.
Finland’s grid operator now publishes carbon emission
intensity every 3 minutes, enabling real-time dispatch
optimization [72].

Domestically, China’s research and application
of temporal-regional grid carbon emission factor
calculation methodologies remain nascent. Tsinghua
University has pioneered a carbon emission flow
analysis framework integrating carbon emission analysis
with power flow calculations. This framework defines
correlation matrices and vectors to compute power
system carbon emission flows, accounting for emissions
across generation, transmission, and distribution
processes, thereby revealing carbon emission patterns
across spatiotemporal scales.

Additionally, State Grid Big Data Center partners
with Shanghai Envision Innovation to develop a next-
generation electricity carbon intensity accounting
system. This system defines regional and marginal
carbon intensity calculation methods, constructs
coupled carbon accounting models for generation and
consumption sides and integrates these into green
electricity trading mechanisms. State Grid Anhui
Provincial Branch has developed a pilot application for
blockchain-based carbon verification integrated with
power data, delivering multifunctional capabilities;
while State Grid Qinghai Provincial Branch leverages
the Qinghai Grid Data Platform to construct a provincial
carbon emission monitoring model, achieving province-
wide daily-frequency carbon emission analysis [4].

Policy Design and Impact Assessment

TSZ-ECF has important application value in the
design of carbon tax mechanisms, carbon allowance
allocation, and policy effectiveness evaluation. First,
TSZ-ECF can accurately reflect the marginal carbon
emissions of electricity generation in different regions
and at different times. Based on real-time carbon
emission levels, carbon taxes can be levied more
precisely, encouraging enterprises to optimize their
electricity load and promote low-carbon transformation.
Cui et al. proposed a comprehensive demand response
scheduling method for the user side based on the
characteristics of dynamic electricity carbon emission
factors and carbon taxation. The study shows that
carbon taxes can guide users to pay attention to the
differences in electricity carbon emission factors at
different times, thus promoting low-carbon electricity
usage behavior [75]. The U.S. Internal Revenue Service
(IRS) and Department of the Treasury mandate under
the Inflation Reduction Act that the clean hydrogen
production tax credit requires compliance with hourly
matching and geographic deliverability. This framework
permits hour-by-hour lifecycle emission accounting
during the hourly matching phase, thereby substantively
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embedding temporal-regional grid emission factors into
tax incentive thresholds [76].

Secondly, in the carbon emissions trading market,
the application of TSZ-ECF can provide more refined
allocation criteria for electricity-consuming enterprises,
more accurately reflecting their actual carbon emission
responsibilities and guiding them to improve electricity
usage behavior. Lu et al. introduced the concept of
Locational Marginal Carbon Emission (LMCE),
grounded in market-clearing mechanisms. Building
on this, they derived the Locational Average Carbon
Emission (LACE) metric to quantify the total carbon
liability —associated with electricity consumption.
This approach helps correct the over-attribution of
emissions on the demand side [75]. In China’s practice,
the Guangzhou Municipal People’s Government has
directed research on city-level dynamic grid emission
factors to enable precise calculation of temporal-regional
grid emission factors, laying the technical groundwork
for subsequent carbon accounting systems [77].

Finally, TSZ-ECF serves as a tool to evaluate the
real-world impact of policy interventions on carbon
reduction. By accurately quantifying the emission
reductions, it is possible to verify policy effectiveness
and further improve policy guidance and incentive
mechanisms. Amir Shahin Kamjou et al. compared the
use of historical data and real-time data in estimating
marginal emission factors in electricity generation.
They suggested that real-time marginal emission factors
allow policymakers to better understand the temporal
and regional variation in emissions. This supports
more effective emission reduction policies and energy
structure optimization [76].

Empirical Applications and System Architecture
At present, the world is actively addressing
climate change and promoting the clean and low-

carbon transition of energy. Countries are paying
increasing attention to the completeness, accuracy, and

& California 15O

Teday's Outlook Demand  Supply
and
Grid siatus » Normal
CO, emissions (serving 15O load)
o
6,246 mrcoy/h
Current CO; emissions

PN ‘.

Fig. 6. California Independent System Operator (CAISO) platform.

transparency of electricity carbon emission data. They
are also promoting the calculation and application of
TSZ-ECF. In response, many countries and regions
have introduced relevant policies and launched platform
development initiatives.

In 2022, the US Congress enacted legislation
requiring the US Energy Information Administration
(EIA) to publish hourly average and marginal carbon
emission factors. These data serve as a basis for
calculating product carbon footprints. The California
Independent System Operator (CAISO) platform (Fig. 6)
provides hourly-updated regional carbon intensity data,
which are further disaggregated by subregional grids. In
partnership with academic institutions, the UK National
Grid has developed a system to forecast carbon intensity
trends across 14 national regions, with 30-minute
resolution and a 96-hour forecast horizon. Meanwhile,
the Carbon Intensity API platform (Fig. 7) provides
regional electricity carbon intensity updates every 5
minutes, supporting both real-time and forecasted data.
It has been widely adopted in mobile applications and
corporate carbon reduction systems. In terms of EU
and international cooperation, the European Union
has worked with Japan, Canada, the United States,
and others to promote the establishment of an hourly
electricity traceability mechanism. It is also exploring
reducing the temporal granularity to 15-minute intervals
to align with electricity spot market clearing times. In
Finland, the power grid already releases carbon intensity
data every 3 minutes. In addition, Electricity Maps (Fig.
8) provides data on power generation mix, electricity
prices, and carbon intensity for over 190 countries and
regions. It provides real-time, historical, and 72-hour
forecast data. Using the flow-tracing technology, it
calculates TSZ-ECFs that let users monitor the carbon
intensity and energy source mix of each region at any
time.

China has also launched national initiatives to
improve carbon tracking. State Grid Corporation of
China, in collaboration with multiple institutions, has
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Fig. 8. Electricity Maps.

established a national carbon emission monitoring
and analysis platform. Pilot programs have been
conducted for calculating regional electricity carbon
emission factors, enabling monthly estimation of
carbon emissions at national, regional, and sectoral
levels. China Southern Power Grid has established
a carbon emission monitoring platform focused on
energy consumption. The system enables the calculation
and dynamic monitoring of total carbon emissions
and carbon intensity per unit of GDP across different
regions, sectors, and even individual enterprises within
its service area.

Germany

Results and Discussion

Despite significant advances in Temporal-Regional
Grid Emission Factors (TSZ-ECF) research, six
critical challenges persist in scaling toward large-scale
engineering applications.

Firstly, insufficient data  accessibility and
transparency constitute the primary barrier. Core
data, including real-time electricity flows and power
generation unit coal/gas consumption, are fragmented
among grid operators, power plants, trading centers, and
third parties, lacking unified open interfaces; renewable
electricity, green certificates, and carbon emission
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monitoring data suffer from low update frequencies
and inconsistent metrics, impeding minute- or even
second-level factor calculations. This stems from
intertwined data silos and commercial confidentiality
clauses, compounded by the absence of real-time
carbon monitoring in China’s Regulations on Security
Protection of Power Monitoring Systems, resulting
in ambiguous data quality accountability. As Zhou
et al. [78] demonstrated in emerging economies, data
availability dominates uncertainty in carbon emission
quantification, necessitating institutional designs to
dismantle administrative and sectoral barriers.

Future initiatives should leverage the UK Carbon
Intensity APl and US eGRID models to establish
a national electricity-carbon data hub, formulating
Minimum Dataset (MDS) standards;, integrate
blockchain and privacy-preserving computing to achieve
“yisible utility without raw data exposure”. We propose
that the National Development and Reform Commission
(NDRC) establish and chair an Electricity-Carbon Data
Alliance to draft standards, followed by deploying
federated learning nodes in the Yangtze River Delta and
Jing-Jin-Ji regions toward province-level node coverage.
Concurrently, amend the Regulations on Security
Protection of Power Monitoring Systems to: (1) classify
real-time carbon measurements under Security Level
II, (2) grant data-sharing exemption clauses for carbon
accountability purposes.

Secondly, the trade-off between model complexity
and computational efficiency intensifies in provincial-
level grids. Algorithms such as complex power
distribution matrices, graph-theoretic DFS/BFS, and
carbon flow networks exhibit exponential computational
growth for matrix inversions or traversals in large-scale
systems. High renewable penetration induces frequent
node-branch state changes, invalidating traditional
linearized assumptions and requiring nonlinear
optimal power flow or rolling horizon optimization —
compromising real-time performance. Fundamentally,
carbon flow tracing is a nonlinear-nonconvex-high-
dimensional problem, while existing EMS/DMS CPU-
GPU heterogeneous computing lacks deep customization
for carbon flow kernels, creating dual algorithm-
hardware bottlenecks. Zhang et al. [79] revealed
analogous effects in China’s high-carbon industries:
capital misallocation driven by carbon risks hinges on
computational latency; delays beyond 5 minutes lock in
28-million-yuan inefficient capital, directly applicable to
TSZ-ECF scenarios.

Future initiatives should establish a national
electricity-carbon data hub informed by the UK Carbon
Intensity API and US eGRID frameworks, instituting
Minimum Dataset (MDS) standards while integrating
blockchain and privacy-preserving computing to enable
visible utility without raw data exposure. We propose
that the National Development and Reform Commission
(NDRC) convenes an Electricity-Carbon Data Alliance
to formulate standards, subsequently deploying
federated learning nodes across the Yangtze River Delta

and Jing-Jin-Ji regions to achieve provincial node
coverage. Concurrent amendments to the Regulations on
Security Protection of Power Monitoring Systems must
classify real-time carbon measurements under Security
Level II with data-sharing exemption clauses. Subsequent
phases require implementing physical-data dual-driven
methodologies, where graph neural networks and
Transformer architectures train spatiotemporal carbon
potential surfaces offline via power-flow—carbon-flow
coupling models. Online inference executes lightweight
forward propagation for minute-second responsiveness
within an edge-cloud orchestration framework. Critical
milestones comprise: developing an open-source—
carbon-flow graph neural network library using PyTorch
Geometric with a 100-node benchmark system; adapting
GPU-accelerated optimal power flow kernels for sub-
500 ms cloud inference latency; and deploying INTS-
quantized models on edge devices by 2028, featuring
sub-300 MB memory footprints compliant with county-
level embedded gateway constraints.

Thirdly, it is difficult to choose the appropriate
spatiotemporal scale. Excessively fine spatiotemporal
granularity (such as 5 minutes per node) can improve
accuracy but leads to the “curse of dimensionality”;
overly coarse divisions cannot capture local fluctuations
in new energy output, resulting in distorted demand
response and green electricity trading incentives.
Current Guidelines for Power System Security and
Stability specify only 15-minute security constraints
without carbon granularity guidance. Future work
should establish a  hierarchical-domain-adaptive
mechanism dynamically adjusting granularity based on
renewable penetration, load density, and grid congestion;
employ multi-objective optimization (accuracy real time
economy) for automatic optimal-scale selection, enabling
scalable spatiotemporal resolution. Implementation
requires: (1) clustering typical provinces via penetration-
congestion matrices, (2) developing Python toolkits with
NSGA-III for minute-level switching, (3) advancing the
TSZ-ECF Multi-scale Application Guideline from group
to industry standard.

Fourth, inadequate uncertainty quantification and
robustness persist. Compound uncertainties — from
stochastic source-load behaviors, market price volatility,
and intrinsic carbon factor variability — risk misleading
deterministic factors. Current studies predominantly
provide point estimates, lacking confidence intervals,
robust intervals, or scenario analyses. This originates
from heteroscedastic multi-source distributions in
carbon factor chains, exacerbated by China’s carbon
market MRV system using fixed +5% error bands
that ignore real-time tail quantiles. Zhou et al. [78]
emphasized that neglecting confidence intervals in
emerging economies systematically underestimates
carbon emission elasticity, distorting policy simulations.

Future research shall establish a probabilistic interval
scenario tri-dimensional uncertainty representation
framework to generate posterior distributions of carbon
emission factors through Bayesian deep learning,
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subsequently embedding carbon factor confidence
intervals into spot market clearing and renewable energy
trading mechanisms for robust low-carbon decision-
making. Implementation requires initially developing
an open-source Bayesian neural network framework to
deliver 95% confidence intervals; subsequently, piloting
robust carbon curves clearing in Guangdong’s spot
electricity market to quantify cost efficiency against
deterministic carbon factor benchmarks; and ultimately,
incorporating confidence intervals into renewable
energy trading contractual templates to form underlying
derivatives.

Fifth, misalignment with existing carbon/power
markets creates friction. National/provincial GHG
inventories still use annual/regional average factors,
while corporate carbon disclosures and CBAM
calculations adopt inconsistent metrics; power spot
markets, renewable electricity trading, and carbon quota
settlements operate with divergent temporal-spatial
boundaries. Rooted in segregated governance between
electricity and carbon authorities, this institutional
friction manifests through unaligned statistical
frameworks, reporting protocols, and data dictionaries.

Future policy should establish national Technical
Specifications for Time Spatial Zonal-Electricity
Carbon Factors (TSZ-ECF), standardizing boundaries,
methodologies, data protocols, and interfaces while
aligning with international regimes, including the
EU Carbon Border Adjustment Mechanism (CBAM),
ISO 14067, and the GHG Protocol to develop
cross-border carbon labeling mutual recognition
protocols for export verification. Implementation
requires: initially launching the standardization initiative
with parallel bilingual CBAM-alignment studies; then
establishing a Guangdong-Hong Kong-Macao-EU
renewable energy pilot to achieve TSZ-ECF and EU
Emission Factors (EF) mutual recognition; concurrently
embedding carbon labels in Harmonized System (HS)
codes at customs for single-pass export verification.

Finally, the lack of standardization and
interoperability has resulted in siloed regional
platforms, hindering carbon accountability for cross-
border renewable electricity or imported power. This
deficiency originates from two critical gaps: TSZ-ECF
remains excluded from the IEC 61970/61968 Common
Information Model (CIM) extension package, while
China’s Guidelines for Power Carbon Metrology
currently holds only voluntary group-standard status
without legally binding force.

To resolve these barriers, TSZ-ECF must serve as
the nexus integrating the full “generation scheduling-
market clearing-carbon  quotas-demand response”
chain. Concretely, day-ahead and real-time electricity
markets should adopt carbon curve bidding, carbon
markets need to permit TSZ-ECF-driven dynamic quota
adjustments, and demand-side strategies (including
interruptible loads, virtual power plants, and storage
dispatch) should embed real-time carbon factors.
A regulatory sandbox mechanism is proposed for

pilot deployment in Beijing-Tianjin-Hebei, Yangtze
River Delta, and Guangdong-Hong Kong-Macao
regions to establish replicable electricity-carbon
synergy paradigms. Implementation will follow
a phased approach: First, conduct carbon curve bidding
simulations in the Beijing-Tianjin-Hebei grid and
publish technical reports. Subsequently, enable +5%
quota adjustments based on TSZ-ECF in the Yangtze
River Delta carbon market. Finally, integrate TSZ-
ECF into virtual power plant storage strategies across
Guangdong-Hong Kong-Macao to achieve sub-5-minute
closed-loop response cycles.

Conclusions

The Time Space-Zone Electricity Carbon Factor
(TSZ-ECF), characterized by its dynamic, marginal,
and spatially refined nature, is emerging as the
“yardstick” that connects the electricity market, carbon
market, and energy internet. This paper systematically
reviews the theoretical basis of TSZ-ECF, the evolution
of its calculation methods both internationally and
domestically, and its diverse values in electricity market
design, user-side carbon management, grid operation,
and policy evaluation. The research results show that
the shift from “annual-regional average values” to
“minute-node marginal values” enables TSZ-ECF to
capture the spatio-temporal heterogeneity brought by
high proportions of renewable energy, significantly
improving decision-making accuracy in scenarios such
as carbon footprint, green power trading, and demand
response.

International experience indicates that economies
like the United States, the United Kingdom, Europe,
Australia, and Japan have formed a ‘“government-
university-enterprise” collaborative data and algorithm
ecosystem, but have yet to solve key challenges such
as cross-border power interaction and green power
deduction. China, on the other hand, has achieved
original breakthroughs in carbon flow tracking theory,
graph theory algorithms, and full-process carbon
measurement, but still faces shortcomings in data
openness and standard mutual recognition. The four
major bottlenecks of data, algorithms, standards,
and markets are intercoupled, and a systematic
solution is urgently needed through national-level
data infrastructure, lightweight AI algorithms,
unified technical norms, and cross-market mechanism
innovation. Looking ahead, as the “dual carbon”
goals enter the critical stage, TSZ-ECF will move
from academic research to large-scale engineering
applications, becoming the “baton” for real-time low-
carbon dispatch in power systems, the “price tag”
for enterprise carbon asset management, and the
“passport” for mutual recognition of carbon footprints
in international trade.
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