
Introduction

Against the backdrop of global warming, in 
December 2015, the Paris Agreement set a hard target 

to limit the global average temperature increase to 
within 2ºC above pre-industrial levels and strive to keep 
it within 1.5ºC [1]. To better achieve this goal, China 
issued the “Carbon Peaking” and “Carbon Neutrality” 
plan (referred to as “Carbon Neutrality and Carbon 
Peaking”) in October 2021. All industries across  
the country have begun to systematically promote  
the transformation of their industrial structures, striving 
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Abstract

Traditional regional or annual average electricity carbon emission factors struggle to accurately 
reflect the temporal and spatial variations in carbon emissions associated with electricity consumption, 
making it difficult to support refined low-carbon management needs such as demand-side response, 
green electricity trading, and carbon footprint accounting. The Time-Sharing and Zonal Electricity 
Carbon Emission Factor (TSZ-ECF), a key metric that dynamically characterizes the marginal carbon 
emission intensity per unit of electricity consumption across different time periods and grid nodes 
(or regions), has garnered widespread attention in academia and industry in recent years. This paper 
systematically reviews the theoretical foundations of TSZ-ECF, mainstream accounting methods, their 
advantages and disadvantages, and applicable scenarios. It focuses on analyzing the application value 
and practical progress of TSZ-ECF in areas such as electricity market mechanism design, user-side 
carbon management, grid planning and operation, and policy formulation. Finally, the paper delves 
into the key challenges faced in current research and outlines future research directions for TSZ-ECF. 
This review aims to provide researchers and practitioners in related fields with a comprehensive overview 
of the current state of research, promoting the advancement of TSZ-ECF theory, methodologies, 
and applications to support the low-carbon transition of power systems and the achievement of “Carbon 
Neutrality and Carbon Peaking” goals. 
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to achieve a comprehensive green transition as soon 
as possible [2]. In the power industry, in 2024, carbon 
emissions from the power sector accounted for 45% of 
the country’s total emissions [3]. Therefore, successful 
emission reduction in the power industry is crucial 
for the early realization of the “Carbon Neutrality and 
Carbon Peaking” goals. Against this background, 
China’s power industry covers extensive fields and 
needs to accurately measure and control carbon 
emissions. There are shortcomings in this process that 
must be addressed in a targeted manner. Under current 
conditions, this has become an urgent problem for the 
industry to solve.

There have been some studies on the methods and 
indicators for calculating carbon emissions, and the 
electricity-carbon factor is one of the key indicators [4]. 
The electricity carbon factor, also known as the power 
carbon dioxide emission factor or grid carbon emission 
factor, refers to the carbon dioxide emissions caused 
by the use of a unit of electricity during the production 
process of a product. The traditional calculation method 
mainly adopts the traditional grid carbon emission 
factor method with a regional overall unit and a time 
span of years. For instance, internationally, Australia 
[5] and the United Kingdom [6] calculate the average 
carbon emission factor on an annual basis. In addition, 
some Chinese researchers have systematically sorted out 
and summarized the development status and calculation 
methods of the average electricity-carbon factor of 
domestic and foreign power grids, and optimized the 
calculation methods and management models of the 
electricity-carbon factor from the practical application 
level [7].

However, during the process of using the traditional 
method for calculating power grid emission factors, it 
was found that this method has a low update frequency 
and precision, a large spatial span, and is difficult to 
reflect the dynamic changes and regional differences 
of carbon emissions in the power system. Therefore, in 
order to precisely calculate the carbon emissions of each 
region, it is necessary to calculate the power emission 
factors by time periods and regions.

For the time-sharing and zoned problem, reference 
[8] analyses the carbon mechanism of every grid-side 
link. An optimised grid-side accounting method is 
proposed. The new method cuts model complexity and 
boosts data-update frequency. Reference [9] considered 
the multi-period coupled MCI (Marginal Carbon 
Intensity) theory and proposed and verified an adaptive 
fast calculation method for MCI uncertainty analysis; 
reference [10] proposed a carbon-green certificate 
mutual recognition mechanism based on MCI, which 
solved the incentive problem; reference [11] built  
a hierarchical, zoned, and decoupled model. It calculates 
province-wide grid-supply carbon factors. The model 
gives each sub-region its own targeted factor. Reference 
[12] combines the carbon emission flow theory and 
proposes a carbon emission calculation method for 
each link in the entire process of the power system, 

which can more accurately reflect the changes in carbon 
emissions of the power system. Reference [13], based 
on the typical spatio-temporal fusion characteristics of 
power grid energy flow, proposed an hourly power grid 
carbon emission factor prediction model based on the 
T-Graphormer graph neural network, and the prediction 
effect has been significantly improved. To address 
the issue of data sensitivity, reference [14] adopts  
a distributed architecture for cross-grid collaborative 
calculation of power carbon emission factors, enabling 
each company to accurately calculate the regional power 
carbon emission factors of each province simply by 
exchanging the calculation results of the factors. Among 
the current methods for calculating the electro-carbon 
factor in China, reference [15] proposed a calculation 
method for the carbon emission flow of the power 
system based on the power flow distribution matrix, 
successfully achieving accurate tracking and source 
tracing of the carbon emission flow of the power system. 
Reference [16] proposed a carbon flow analysis method 
based on graph theory, which improved the deficiencies 
of existing methods in the distribution of carbon flow 
networks and path traceability. Based on the theory 
of carbon emission flow analysis in power systems. 
Reference [17] proposed a carbon measurement method 
for the entire process of power systems. Reference [18] 
proposed a carbon flow tracking method for power 
systems based on a complex power distribution matrix, 
which can accurately calculate the real-time carbon 
emission distribution of the power system.

In the field of international research, multiple 
institutions and scholars have proposed different 
calculation methods for carbon emission factors. Based 
on the time granularity, the EU strengthens the fairness 
of cross-border carbon accounting through the CBAM 
mechanism and produces relevant reports every quarter 
[19]. The United States proposed the carbon balance 
equation, which better considers the power transmission 
between regions and the changes in carbon emissions at 
different times [20]. Japan, on the other hand, calculates 
the carbon emission factors for specific regions and 
times based on the power generation and emission 
factors of different power generation types, combined 
with regional power demand [21]. The time granularity 
of both is at the hour level.

Through literature research, it can be found that the 
research focuses on Time-Sharing and Zonal Carbon 
Emission Factor at home and abroad are different: 
the core objective internationally is to improve the 
calculation accuracy to reflect the spatio-temporal 
differences, while in China, more emphasis is placed 
on precisely calculating and analyzing carbon emission 
factors in combination with the unique characteristics of 
China’s power system operation and energy structure. 
Therefore, this article summarizes the research progress 
in regions such as the United States, the United 
Kingdom, and the European Union, elaborates on the 
development trends within China, and analyzes their 
respective advantages and disadvantages. The aim  
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is to summarize the relevant research both 
internationally and domestically, hoping to provide 
readers with a comprehensive and detailed development 
status of the electro-carbon factor, offer theoretical 
references for relevant departments and personnel, and 
contribute to the realization of carbon reduction targets. 
The research framework of this paper is shown in Fig. 1.

Theoretical Basis and Conceptual Analysis  
of Time-Sharing and Zonal Carbon Emission Factor

The Basic Concept of the Carbon Emission Factor

The carbon emission factor refers to the amount of 
carbon dioxide emissions generated in the process of 
producing one unit of electricity, reflecting the carbon 
emission intensity in the electricity production process 
[22, 23]. The “carbon emission factor” is an important 
indicator for measuring carbon emissions. Enterprises 

and governments can use the carbon emission factor 
to assess the carbon emissions generated during power 
transactions, calculate the carbon footprint, and provide 
a basis for enterprises to adjust their emission reduction 
plans. At the same time, it can reflect the drawbacks 
of the energy structure and guide the direction for the 
implementation of energy conservation and emission 
reduction policies by the government [24, 25].  
As a bridge connecting the electricity market and the 
carbon market, the “carbon emission factor” is of great 
significance in measuring and pricing carbon emissions 
in electricity transactions [26].

Average Emissions Rates

The average factor, also known as Average 
Emissions Rates (AER), is the ratio of total carbon 
emissions to total electricity generation over a period 
of time or a region, i.e., the total direct carbon dioxide 

Fig. 1. The research framework of this article.
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(CO2) emissions from the electricity production sector 
divided by the total electricity generation over a certain 
period of time (usually 1 year) [27], usually expressed 
in units of grams of carbon dioxide per kilowatt-hour 
(gCO2/(kWh)) [4].

The average factor is used to describe the average 
level of emissions from all sources of generation in the 
grid over a specific region and time period. This type 
of indicator has attributional properties and requires 
an equal apportionment of responsibility for emissions 
from the electricity sector, ensuring that each electricity 
user bears the same proportion of responsibility for 
emissions. The average factor can be calculated both 
historically, based on empirical data, and to predict 
future grid conditions, and it is suitable for assessment 
and analysis at any time period (e.g., annual, hourly 
level) [28].

In China, the average factor is mainly used for 
carbon accounting of enterprises participating in the 
national carbon market trading, which can effectively 
ensure fair trading among enterprises in different 
regions. With the in-depth promotion of China’s carbon 
market and unified power market construction, as 
well as the gradual implementation of the European 
Union carbon border adjustment mechanism, regional 
power grids will strengthen the scheduling between 
the regional power grids and will be converged, the 
selection of the whole of China’s power grids carbon 
emission factors for carbon accounting and carbon 
verification is more advantageous [29]. Specifically, for 
industries included in China’s carbon market, including 
the power sector and the cement, steel, and electrolytic 
aluminium industries to be included, enterprise carbon 
accounting should be calculated using a uniform electric 
carbon factor across China [30].

From an international perspective, in the United 
States, the U.S. Environmental Protection Agency 
(EPA) adopts the eGRID methodology in measuring 
the electric carbon factor, which calculates the average 
electric carbon factor by collecting data on power 
generation and carbon emissions from power plants 
across the country. The method’s visualisation page 
presents statistical distributions including total carbon 
emissions and carbon emission rates for each US state, 
as well as fuel ratios for electricity generation, allowing 
users to analyse and compare the environmental 
performance of different power systems [4].

The average factor reflects the pattern of change in 
greenhouse gas emissions over time and is widely used 
because of its ease of calculation. However, average 
factors are less accurate in estimating emissions due to 
changes in demand [31], and the average factor also does 
not reflect well the changes in emissions due to power 
sector interventions [32]. In order to make up for the 
shortcomings of the average factor and better monitor 
the changes in carbon emissions, some scholars have 
started to calculate the marginal emission factor.

Marginal Emission Factors

Marginal factors, also known as Marginal 
Electricity Carbon Factors (MEF), are the additional 
carbon emissions produced by the power system when 
electricity generation is increased by one unit [33]. This 
indicator describes the changes in carbon emissions due 
to changes in electricity loads and is divided into short-
term marginal factors (SRMER) and long-term marginal 
factors (LRMER). The general definition Equation is:

	
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =

∆𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
∆𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 
	

Where: ΔEmissions indicates a change in CO2 due to 
a change in demand, ΔElectricity indicates the change 
in power [34].

SRMER are used to characterise the impact of 
changes in electricity loads on emissions, provided 
that the grid structure (i.e., capital assets such as 
generating units, transmission lines, etc.) is fixed. This 
indicator reflects the impact of interventions on short-
term emissions from the grid by assessing the emission 
characteristics of each type of generating unit for a given 
group of generating units during a given period of time 
when “marginal dispatch” (i.e., adjusting generation in 
response to changes in load) occurs. Commonly used 
sources of hourly short-term marginal emission rate data 
include the U.S. Environmental Protection Agency’s 
Avoided Emissions and Generation Tool (AVERT), 
WattTime, Resurity, PowerMap, and the National 
Renewable Energy Laboratory’s (NREL) Cambium. 
The Marginal Emission Factor database developed by 
the Center for Climate and Energy Decision Making at 
Carnegie Mellon University provides data at a monthly-
hourly resolution.

LRMER is a measure of the impact of changes in 
electricity load on emissions, which takes into account 
the potential impact of load fluctuations on the structure 
of the grid, and can be calculated through the capacity 
expansion model for the power sector. The model 
predicts whether the grid structure will be adjusted in 
response to load changes. Long-term marginal factors 
are mostly used to assess the carbon impact of new 
buildings, heat pumps, and electric vehicles [35].

In general, both the average factor and the marginal 
factor are the main tools for reflecting the intensity of 
carbon emissions, and both reflect the current power 
structure and operation of the power system, but 
there are also differences between the two: Firstly, the 
average factor is easy to calculate, with historical values 
available, and is well suited to systematic analyses, 
mainly for stock analyses. For example, based on an 
average factor, it is possible to compare the magnitude 
of carbon emissions from the electricity systems of two 
countries. On the other hand, the marginal factor is 
relatively complicated to calculate, mainly focusing on 
the local, for the analysis of carbon emissions generated 
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factor is as follows: Firstly, the topological structure 
and power supply structure of the power grid exhibit 
significant time-varying characteristics. The proportion 
of power generation from various sources at different 
times directly affects the carbon emission factor. For 
instance, due to the influence of seasons and sunlight, 
the proportion of hydropower increases during the rainy 
season, which significantly reduces the carbon emission 
factor. Photovoltaic power has a greater effect during the 
day when the sunlight is strong, thereby influencing the 
overall carbon emission factor [46]. Secondly, the time-
varying nature of electricity load will alter the system 
dispatching methods, thereby indirectly affecting the 
carbon emission factor. For instance, during periods 
of high electricity demand, the system requires a large 
amount of electricity and may resort to power generation 
methods with higher carbon emissions, resulting in an 
increase in the carbon emission factor. Additionally, 
the Time-Sharing nature of the carbon emission factor 
makes the scheduling policy of the electricity-carbon 
system dependent on time, giving rise to numerous 
studies on low-carbon economic scheduling strategies 
[47-49].

Theoretical Foundation of Zonal Granularity

The zonal characteristics of the carbon emission 
factor refer to the fact that the carbon emission factor 
varies in different values as the space changes. Based on 
the zonal characteristics of the carbon emission factor 
and the different application scenarios, the carbon factor 
can be divided into the national power grid carbon 
emission factor, the regional power grid carbon emission 
factor, and the provincial power grid carbon emission 
factor [50, 51]. The reasons mainly include the following 
aspects:

First, there are differences in energy structures 
across various regions. The carbon emissions produced 
by different fuels are also different. Moreover, factors 
such as the size of the power plant and the intensity 
of power generation load can also affect the carbon 
emission factor. Therefore, the carbon emission factor 
is influenced by regional variations [52]. For instance, 
regarding the carbon emission factors of thermal 
power units in different regions of China, those in the 
northwest region are relatively higher. If we break it 
down to specific provinces, the carbon emission factor 
in Yunnan Province is higher than that in Beijing. As 
the scale of the units increases, the carbon emission 
intensity will show a decreasing trend. The higher the 
power generation load of a unit, the greater its efficiency 
will be, and the lower the carbon emission factor will be 
[53].

Second, the calculation elements of carbon intensity 
are missing. Due to the characteristics of timeliness 
and efficiency of power transmission, the flow path of 
electricity in the power grid is difficult to accurately 
track, and the regional differences in the carbon emission 
factor are greatly affected and vary significantly [54].

by incremental electricity, which can more accurately 
reflect the carbon emission changes of the power 
system in different time and space [36-38]. Secondly, 
the average factor is suitable for comparing carbon 
emission intensity over time, while the marginal factor 
is generally used to compare the emission reduction 
effect of new electricity use [39]. Thirdly, the marginal 
factor is more responsive and accurate to changes in 
grid demand than the average factor, and the use of the 
average factor for analyses of changes in demand may 
ignore the impact of specific generators, such as fossil-
fuel-fired power plants, which adjust to fluctuations in 
demand, while hydroelectric or nuclear power plants, 
which are base loads, remain unchanged, and whose 
emission characteristics are different from those of the 
average value [40, 41].

From the Average Factor to the Marginal Factor

Accurately calculating the electric carbon emission 
factor for the power sector is critical to driving energy 
savings and emission reductions in the sector. Marina 
[42] et al. used regional data from the Italian market to 
compare the widely used emission factor approach and 
found that region-specific factors are superior to average 
factors. Yi Jun et al. [43] analysed the international and 
Chinese domestic grid average factor and found that 
the average factor method is simple but not real-time 
enough, and the method should be optimised in terms 
of accounting period, accounting granularity, and green 
power. Eelke et al. [44] combined emission data from 
the Netherlands, Sweden, and France and found that 
applying the annual average factor directly to the hourly 
series would result in measurement errors, and that 
seasonal, intra-day fluctuations would be ignored.

In general, the average factor method is easy to 
calculate at the macro-accounting level, but it introduces 
bias when assessing short-term emission reduction 
measures, demand-side management, and other 
immediate decisions. Because it cannot reflect spatial 
and temporal differences, researchers have temporally 
resolved the average factor and begun studying the 
time-sharing and zonal carbon emission factor.

Time-Sharing and Zonal Carbon Emission Factor

Theoretical Basis of the Time-Sharing Granularity

The Time-Sharing characteristic of the carbon 
emission factor refers to the fact that the carbon 
emission factor changes with time and presents 
different numerical values. Based on this characteristic, 
the concept of time-varying carbon emission factor 
was introduced. The time-varying carbon emission 
factor refers to the carbon dioxide emission volume 
corresponding to each unit of power generation, 
reflecting the carbon emission differences of the power 
system in the time dimension [45]. The source of the 
Time-Sharing characteristics of the carbon emission 
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Third, as the research on the electricity-carbon 
market deepens, the carbon market and the electricity 
market have developed into a coupled state where they 
influence each other. In order to accurately purchase 
sufficient carbon emission rights, enterprises need 
to calculate their carbon emissions more accurately. 
This results in the zonal characteristics of the carbon 
emission factor having a more significant influence [4].

Core Connotations and Key Characteristics  
of TSZ-ECF

The traditional electro-carbon factor mainly 
takes years as the time unit and uses the average  
electro-carbon factor as the emission situation of 
each region, which has poor accuracy and pertinence.  
The time-of-use and zonal electricity-carbon factor 
refers to the amount of carbon dioxide emissions 
per unit of electricity within a specific time period  
and geographical area [30], which can reflect the 
dynamic changes in the electricity-carbon factor over 
the course of a year. This measurement indicator is 
different from the traditional method of calculating the 
electro-carbon factor and is more targeted. It can mainly 
be summarized into the following four aspects (as 
shown in Fig. 2):

1) Regionality: This method makes up for the 
defect that average data is affected by extreme data. 
By calculating local indicators by region, it can better 
reflect the carbon emission characteristics of power 
plants in different regions and enhance the pertinence of 
the results [30].

2) Dynamics: This method produces different results 
at different times, reflecting the changes in the system’s 

carbon emissions in real time. It can promptly correct 
and update the system model, achieving timely handling 
of errors [30].

3) Marginal nature: It can inform users how the 
carbon emissions of the system change when they 
use one more or one less kilowatt-hour of electricity. 
Since this method can accurately produce the carbon 
emissions of electricity at a specific moment, it can 
calculate the additional carbon emission intensity (i.e., 
marginal electricity-carbon factor) generated per new 
unit of electricity consumption [55].

4) Complexity: This method requires considering 
the changes in different regions and times, taking into 
account regional differences and the fluctuations in 
electricity consumption at different times, to construct 
a model that suits local conditions, and to conduct 
risk prediction to deal with extreme situations, which 
demands a certain degree of flexibility [55].

Materials and Methods

TSZ-ECF Accounting Methodology

Typical International Calculation Methods for TSZ-ECF

International methods for calculating TSZ-ECF 
vary in temporal resolution, ranging from annual 
averages to hourly intervals. Spatially, the granularity 
of division extends from national, sub-regional, to 
municipal levels. In terms of calculation content, 
most methods focus on direct emissions from the 
generation side, while some incorporate inter-regional 
power transmission, imported electricity, green  

Fig. 2. The key characteristics of the TSZ-ECF.
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power/certificate deductions, or lifecycle indirect 
emissions. The core objective is to improve accounting 
accuracy by reflecting spatiotemporal variations, though 
these methods commonly face challenges such as 
high data requirements, computational complexity, or 
insufficient timeliness.

(1) United States
The US relies on the eGRID all-source dataset 

to construct time-sharing and zonal carbon balance 
equations. It couples inter-regional electricity transfers 
with time-varying generator emissions into a five-level 
factor system (from power plant to sub-region), enabling 
standardization of Scope 2 accounting. While its 
precision is an advantage, this method simultaneously 
exposes stringent demands for the availability, 
timeliness, and computational capacity required to 
handle high-frequency data.

The US employs a time-sharing and zonal carbon 
balance equation that accounts for inter-regional 
power transmission and temporal variations in carbon 
emissions, enabling a more accurate reflection of actual 
emission conditions [20].

	 	

Where: fi represents the carbon emissions generated 
from electricity production in region i; xi is the grid 
carbon emission factor for region i; di is the electricity 
consumption in region i; vki is the electricity exported 
from region i to region k; uij is the electricity imported 
into region i from region j, xij is the grid carbon emission 
factor for region j.

The US EPA has established a comprehensive 
dataset covering nearly all US power generation 
sources, containing operational data (electricity output 
and heat input) and emissions data (CO2, Hg, CH4, N2O, 
NOx, PM, and sulfur oxides) for Electricity Generating 
Units (EGUs). Through aggregation and calculation,  
this data yields total system emissions and emission 
rates at the power plant, state, Balancing Authority, 
eGRID sub-region, NERC region, and national levels:

	 	

Where: EFgen,grid is the generation-side grid-average 
CO2 emission factor; Emgrid and Egrid denote the direct 
emissions from the generation side and the net electricity 
fed into the grid, respectively; Emcon and  Econ represent 
the carbon emissions and electricity consumption  
on the user side, respectively; Emcon,loos and Eloss% are  

the emissions associated with grid losses and the average 
grid loss rate, respectively.

EGUs report hourly emissions and operational data to 
the EPA within 30 days after each calendar quarter using 
the Emissions Collection and Monitoring Plan System. 
Enterprises typically use eGRID data for Scope 2 
accounting. The EPA recommends using the eGRID 
sub-region model for Scope 2 calculations. Estimating 
Scope 2 emissions using eGRID sub-regional emission 
rates more accurately reflects the regional emissions 
associated with electricity consumption in specific areas.

By comprehensively analyzing various factors 
and refining spatiotemporal dimensions, the US 
methodology more accurately reflects actual grid 
carbon emissions, providing reliable data support for 
scientifically formulating emission reduction policies 
and energy planning. By fully considering inter-
regional power transmission and emissions across all 
stages, it effectively addresses complexity and meets 
the carbon accounting needs of different regions 
and market entities. Simultaneously, the EPA’s rules 
standardize the accounting of carbon emissions from 
corporate-purchased electricity, helping regulate carbon 
management in the power market, encouraging emission 
reduction measures, and promoting green development 
in the power sector.

However, the US method demands high-quality data 
that is often difficult to obtain, relying on extensive, 
detailed data such as inter-regional power transmission 
volumes, regional generation and consumption time-
series data, and direct emissions from the generation 
side. Data collection channels are complex, and some 
data may be missing, inaccurate, or outdated, increasing 
the difficulty and cost of data compilation. Additionally, 
the time-sharing and zonal carbon balance calculations 
involve multiple variables and inter-regional data 
interactions, while EPA’s rules incorporate multiple 
formulas and stages, requiring high computational 
capacity and expertise, making it challenging for 
ordinary enterprises and institutions to independently 
achieve precise accounting.

(2) United Kingdom
The UK constructs its grid carbon emission 

factor using a “Direct + Import + Lifecycle” tripartite 
framework. It quantifies international electricity 
exchanges and Combined Heat and Power (CHP) 
allocation via weighted averages, incorporates multi-
gas accounting (including CH4 and N2O), and integrates 
with the Climate Change Agreement (CCA). However, 
its annualized averaging obscures intraday fluctuations 
caused by renewable energy variability, fails to deduct 
locally generated green electricity, lacks sufficient 
spatiotemporal resolution, and requires further 
adaptation to accommodate high-penetration renewable 
power systems.

The calculation of TSZ-ECF in the UK includes 
various methods such as direct emissions, indirect 
emissions, and combined heat and power (CHP), each 
with different emphases and scopes [6]. For direct 
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emissions, the basic grid carbon emission factor 
(excluding imported electricity) represents the average 
CO2 emissions per kilowatt-hour of electricity generated 
by the UK National Grid. The calculation formula is as 
follows:

	 	

Where: E1 is the grid carbon emission 
factor excluding imported electricity, expressed  
in kg CO₂/kWh; E2 is the CO2 emissions from electricity 
generation in the United Kingdom, expressed in kg;  
E3 is the electricity generated, expressed in kWh.

For the emission factor including imported 
electricity, the UK accounts for net electricity imports 
via interconnectors with Ireland, the Netherlands, 
France, Belgium, and Norway. This calculation covers 
direct CO2, CH4, and N2O emissions from UK power 
plants and generator sets, as well as emissions from 
imported electricity, but excludes emissions from fuel 
production and transportation. The weighted average 
emission factor is calculated as:

	 	

Where: E4 is the grid carbon emission 
factor, including imported electricity, expressed  
in kg CO2/kWh; E5k is the average CO2 emission 
factor for electricity generation in country k that 
is net-exported to the United Kingdom, expressed  
in kg CO2/kWh; E6k is the net electricity exported from 
country k to the United Kingdom, expressed in kWh.

Indirect emissions include upstream carbon 
emissions from fuel extraction, transportation, and 
distribution. The UK applies a life-cycle assessment 
(LCA) approach, but due to delays in updating well-
to-tank (WTT) coefficients, the timeliness of indirect 
emission calculations is limited. For combined heat and 
power (CHP), the UK uses the 1/3:2/3 DUKES method 
to allocate emissions:

	 	

Where: TFI is the total fuel input to the prime 
mover; HO is the useful heat generated by the prime 
mover; EO is the electricity (or the electrical equivalent 
of mechanical energy) produced by the prime mover; 
HE is the portion of the prime mover’s fuel allocated to 
heat generation; E is the portion of the prime mover’s 
fuel allocated to electricity generation.

When calculating emission factors, the UK not only 
considers carbon emissions from imported electricity 
by obtaining emission coefficients from neighboring 
countries (e.g., France, Norway) through international 
cooperation and applying weighted calculations to assess 
cross-border electricity impacts, but also separately 
accounts for CH4 and N2O emission factors. These are 
integrated with the Climate Change Agreement (CCA) 
to establish clear emission allocation rules for combined 
heat and power (CHP). However, the UK’s use of 
annual average emission factors fails to reflect intraday 
variations in carbon intensity caused by renewable 
energy fluctuations. Additionally, the calculation does 
not deduct local green power generation (e.g., wind, 
solar), thereby failing to capture the emission reduction 
value of renewable energy.

Drawing on the UK’s weighted calculation method for 
imported electricity and considering the characteristics 
of China’s “West-to-East Power Transmission” initiative, 
we can optimize cross-regional carbon emission 
allocation mechanisms. By referencing the UK’s CCA 
framework, we can promote the alignment of emission 
allocation standards for distributed energy sources like 
CHP with China’s domestic carbon market.

(3) European Union
The EU establishes a unified framework based on 

the JRC multi-dimensional factor library (IPCC, LCA, 
NEEFE), termed “Local Emissions–Green Power 
Deduction–Grid Loss Internalization”. It embeds 
emission factors within the Carbon Border Adjustment 
Mechanism (CBAM) to assess the embodied electricity 
carbon in imported goods, aiming to prevent carbon 
leakage. However, it currently overlooks electricity 
exchanges between Member States, and Guarantee 
of Origin (GO) updates lag, resulting in insufficient 
timeliness. Consequently, its response to dynamic 
carbon markets under high renewable penetration 
remains relatively static.

The greenhouse gas emission factors in the EU are 
periodically published by the Joint Research Centre 
(JRC) of the European Commission. This emission 
factor system comprises two categories: emission 
factors for individual EU member states and aggregated 
emission factors for the EU as a whole. Currently, the 
EU does not account for electricity exchanges between 
member states and includes carbon emissions from 
transmission and distribution losses within the scope 
of indirect user emissions. In practical applications of 
emission factors, the EU encourages member states to 
make appropriate adjustments based on local conditions, 
such as renewable energy generation and certified green 
electricity consumption [19].
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Where: EFgrid is the grid-average emission factor, 
expressed in kg CO2/kWh; Econ is the electricity 
consumption on the user side, calculated as Egen minus 
grid-loss electricity Eloss, expressed in kWh; EFlocal and 
Elocal are the local grid-average CO₂ emission factor and 
the local user-side electricity consumption, respectively; 
∑ERES and ∑CE are the electricity generated from local 
green power sources and the certified green electricity 
obtained, respectively, expressed in kWh; CEpurchased  and 
CEsold are the certified green electricity purchased locally 
and sold, respectively, expressed in kWh.

Survey research reveals that the EU employs  
a multidimensional approach (IPCC, LCA, NEEFE) 
covering both direct and indirect CO2 emissions. 
It strengthens the fairness of cross-border carbon 
accounting through the CBAM mechanism, calculating 
emission factors to evaluate the indirect carbon 
emissions from electricity embodied in imported goods, 
thereby ensuring the effectiveness of EU climate policies 
and preventing “carbon leakage”. Simultaneously,  
it supports carbon accounting for transnational 
electricity transactions and refines the green electricity 
deduction mechanism to ensure the reasonable allocation 
of environmental attributes, thereby enhancing 
accounting accuracy. Nevertheless, it inadequately 
considers the impact of electricity exchanges between 
Member States, and delays in updating green certificate 
data affect timeliness. China could reference the EU’s 
cross-regional carbon pricing mechanism to improve 
green electricity accounting standards and promote 
carbon-electricity market coordination.

(4) Australia
Australia divides its grid into seven major 

regions based on state administrative boundaries. 
Within its annual factor framework, it incorporates  
inter-regional electricity transfers, forming  
a “Generation–Import–Export” tripartite carbon balance 
model to achieve dynamic reallocation of interstate 
emission responsibilities. Its National Greenhouse and 
Energy Reporting Act explicitly defines the traceability 
rules for Scope 2 purchased electricity, supporting 
national climate targets and energy efficiency reviews 
for infrastructure projects. However, this method 
imposes high demands on the accuracy of real-time 
exchange data, entails significant integration costs, and 
its dynamic update capability remains constrained by 
the annual reporting cycle.

Australia calculates and publishes electricity average 
emission factors corresponding to different geographical 

boundaries. Essentially, it releases provincial or state-
level electricity average emission factors based on 
administrative boundaries. Simultaneously, Australia 
considers electricity exchanges between grids, where 
the calculation of electricity average emission factors 
for major grids incorporates inter-regional electricity 
transfers [5].

Australia’s National Greenhouse and Energy 
Reporting Act categorizes purchased electricity 
emissions into Scope 1 and Scope 2. The former refers 
to direct emissions from facilities, while the latter 
covers greenhouse gas emissions resulting from a 
facility’s consumption of purchased electricity, heat, and 
steam that are not generated by the facility itself. The 
emissions from purchased electricity equal the product of 
electricity consumption and the corresponding emission 
factor, with distinctions made based on the source of 
purchased electricity: if the purchased electricity comes 
from an Australian state or territory grid, the emission 
factor is that of the corresponding major grid; if the 
purchased electricity originates from other regions, the 
emission factor is provided by the generator or based on 
the Northern Territory emission factor.

Australia divides the nation into seven regions: 
New South Wales and the Australian Capital Territory, 
Victoria, Queensland, South Australia, the South West 
Interconnected System of Western Australia, Tasmania, 
and the Northern Territory. This division results in 
seven major grid emission factors, which are updated 
annually.

	 	

Where: Emlocal, Emk and Emi are the direct power-
generation-side CO2 emissions from the local region, 
region k, and region i, respectively; Elocal, Ek,grid and Ei,grid 
are the electricity generated within the local region, the 
electricity imported into the local region from region 
k, and the electricity exported from the local region to 
region i, respectively; Egen,k and Egen,i  are the electricity 
generated in region k and region i, respectively.

The study of Australia’s approach to calculating 
grid carbon emission factors reveals that it effectively 
combines regional delineation with dynamic factors to 
accurately reflect spatiotemporal variations. Additionally, 
Australia’s collaboration among government, industry, 
and academia enhances data transparency. However, 
challenges remain in integrating electricity exchange 
data across regions, and the dynamic model relies on 
high-precision real-time data, resulting in elevated 
costs. Australia’s electricity carbon emission factors are 
primarily used to estimate emissions from the power 
sector, supporting the formulation and assessment  



Hongjian Li, et al.10

of national climate targets. Additionally, they are applied 
in the carbon emission evaluations conducted during 
energy efficiency reviews of infrastructure projects, 
encouraging new projects to commit to using renewable 
energy.

For China, the dynamic factor model could serve 
as a reference to optimize regional accounting in line 
with the characteristics of the “West-to-East Power 
Transmission” initiative. Furthermore, strengthening 
provincial-level data platforms would improve the 
transparency of green electricity trading.

(5) Japan
Japan constructs a concise carbon intensity model 

using a three-dimensional matrix (“Generation Type–
Region–Time Period”). Its differentiated emission 
factor system is linked with a Green Certificate (Non-
Fossil Fuel Certificate, NFC) deduction mechanism, 
ensuring fulfillment of renewable energy consumption 
responsibilities while preventing double-counting of 
environmental value. However, its focus is primarily 
on the generation phase, neglecting transmission 
and distribution losses and inter-regional exchanges, 
resulting in a relatively narrow accounting boundary. 
This approach holds significance for China in designing 
a lightweight factor system that prevents double-
counting.

Japan employs a time- and region-specific carbon 
emission factor calculation method. Based on the 
electricity generation of different power sources and 
their respective emission factors, combined with regional 
electricity demand, it calculates carbon emission factors 
for specific regions and time periods [21].

	 	

Where: CFi,t is the carbon emission factor for region 
i at time t; EFj is the emission factor for generation type 
j, Genj,i,t is the electricity generated by generation type j 
in region i at time t; Demandi,t is the electricity demand 
in region i at time t.

Japan’s time-and region-specific carbon emission 
factors primarily enable enterprises holding NFCs to 
use them for offsetting the indirect carbon emissions 
from purchased electricity, thereby promoting 
renewable energy consumption. Secondly, electricity 
retailers bear renewable energy consumption obligations 
and use adjusted emission factors to calculate carbon 
emissions, ensuring environmental attributes are 
not double-counted. Its calculation methodology 
is relatively simpler compared to other countries,  
requiring fewer data types and involving a more 
straightforward computational process. Subdivision by 
region and time period allows it to reflect differences 
in electricity-related carbon emissions across different 
regions and times, offering a degree of specificity. 
Furthermore, the algorithm adequately considers 
Japan’s diversified energy structure, distinguishing  

and calculating emissions from different generation 
types.

However, this method has limitations. It primarily 
focuses on emissions from power generation, with 
insufficient consideration of emissions from other stages 
of the power system (e.g., transmission and distribution), 
potentially leading to incomplete accounting results. It 
also lacks inter-regional coordination, failing to fully 
account for the impact of cross-regional electricity 
exchanges on emission factors. In cases where regional 
power grids are closely interconnected, this may affect 
the accuracy of the accounting results.

While ensuring accounting accuracy, China could 
draw lessons from the simplicity of Japan’s algorithm 
to optimize the design of its own grid carbon emission 
factor calculation, thereby reducing computational costs 
and implementation complexity. Additionally, China 
could reference Japan’s practice of categorizing emission 
factors into base emission factors and adjustment 
emission factors, ensuring that only adjustment emission 
factors are used to calculate emissions from purchased 
electricity to avoid double-counting environmental 
benefits.

Comparative Analysis of International 
Calculation Methods

Significant differences exist among countries in 
terms of temporal-spatial granularity, model structure, 
data foundation, and validation depth, resulting 
in carbon intensity for the same kilowatt-hour of 
electricity potentially differing by more than 30% due 
to methodological variations. This severely undermines 
the basis for international comparisons and policy 
benchmarking. By constructing a systematic comparison 
framework (Table 1) that encompasses dimensions such 
as time-space resolution, computational complexity, 
data requirements, grid loss, cross-border adjustments, 
and green power deduction mechanisms, the trade-off 
relationships of different methods within the “accuracy-
cost-feasibility” triangle are quantitatively revealed.

Using this indicator framework, the performance 
differences of TSZ-ECF methods across countries are 
compared. The results are shown in Table 2 and Table 3.

Table 3 quantifies the TSZ-ECF methods of various 
countries across seven dimensions: time resolution, 
spatial granularity, data demand, computational 
complexity, model type, grid loss/cross-border 
adjustment, and green power deduction mechanism.  
The results clearly reveal two trade-off chains. The first 
is the “high-frequency + high-spatial” route represented 
by the USA, where Δt = 5 and Δx = 4 enable capturing 
intraday fluctuations of renewable energy, but come 
with the high thresholds of D = 4 and C = 3. The second 
is the “low-frequency + lightweight” route typified by 
Japan, achieving  Δt = 5 while keeping C = 1, relying 
on simplified matrices and single-region boundaries, 
but sacrificing the completeness of T and G. The EU  
and UK enhance fairness within a static factor 
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Table 1. TSZ-ECF Method Comparative Analysis Framework.

Table 2. Comparative Results of International Representative TSZ-ECF Methods.

Dimension Quantification 
Symbol Definition and Grading

Time Resolution Δt Annual = 1, Quarterly = 2, Monthly = 3, Daily = 4, Hourly = 5,  
Minutely = 6

Spatial Resolution Δx National = 1, State/Province = 2, BA/ISO = 3, Sub-region = 4,  
Plant-level = 5, Unit-level = 6

Data Requirement Intensity D Low = 1, Medium = 2, High = 3, Very High = 4

Computational Complexity C O(1) = 1, O(n) = 2, O(n²) = 3, O(n³) = 4, >O(n³) = 5

Model Type M Average = 1, Marginal = 2, Traceability = 3, Hybrid = 4

Cross-border/Grid Loss Adjustment T None = 0, Grid Loss = 1, Cross-border = 2, Both Combined = 3

Green Power Deduction Mechanism G None = 0, Annual Deduction = 1, Hourly Deduction = 2,  
Real-time Deduction = 3

Country /
Region

Temporal 
Resolution

Spatial 
Resolution

Green Power/ 
Certificate Deduction 

Approach

Calculation 
Method Advantages Disadvantages

United 
States [20] Hourly (EIA) 26 sub-regions 

(EPA)

Adjusts emission 
factors with RECs & 
green-power trades, 
but data updates lag

eGRID 
database; time-

sharing and 
zonal carbon-

balance equation

High real-time 
resolution; 

fine regional 
breakdown

Inter-sub-regional 
transfers not fully 

captured; REC updates 
delayed

United 
Kingdom 

[6]

Annual 
average

National 
(including 
imports)

Adjusts import-
emission coefficients; 

does not deduct 
domestic green power

Combines direct 
and indirect 
emissions

Comprehensive 
data (imports 

included)

Coarse temporal 
granularity; domestic 

green power not 
deducted; WTT factors 

updated slowly

European 
Union [19]

Quarterly 
(CBAM)

EU-wide and 
Member States

Encourages Member 
States to correct 
factors via RES 

generation & GO/
REC trading

(LCA)IPCC 
guidelines; 
Life-Cycle 
Assessment 

(LCA)

Holistic, covers 
full life-cycle 

emissions

Cross-border 
electricity exchanges 

not fully captured; 
GO/REC deductions 

voluntary

Australia
[5]

Annual 
(dynamic 

pilots)

7 main grid 
regions

Distinguishes power 
sources for imports; 
incorporates green-

power trade data

Dynamic 
inter-regional 

exchange 
calculation

Clear regional 
division; 
accounts 

for dynamic 
exchanges

Limited real-time data; 
dynamic methods still 

immature

Japan [21] Hourly (Tokyo) Prefecture-level 
(e.g., Tokyo)

Separate baseline 
& adjustment 

factors to avoid 
double-counting of 

environmental value

Multi-energy 
system 

coupling; 
dynamic 

simulation and 
forecasting

Granular down 
to prefecture; 

avoids double-
counting

High implementation 
complexity; data 

acquisition difficult

Table 3. Quantitative Comparison of Performance Dimensions for International Representative TSZ-ECF Methods.

Country/Region Δt Δx D C M T G

US 5 4 4 3 2 1 1

UK 1 2 3 2 1 2 0

EU 2 2 3 2 2 2 2

Australia 1 3 2 2 1 2 1

Japan 5 3 2 1 1 0 2
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framework through cross-border adjustments (T = 2), 
yet struggle to respond to spot market rhythms due to 
Δt≤2; Australia introduces dynamic terms for interstate 
exchanges, but the annual update cycle lowers the 
overall response speed.

In summary, if the goal is implementation within 
China’s power grid characterized by high renewable 
penetration, inter-provincial exchanges, and a real-
time market, a compromise must be sought between 
“US-level spatiotemporal precision” and “Japan-level 
computational burden”. That is, maintaining Δt≥5, Δx≥3, 
while simultaneously compressing C to 2, elevating T  
to 2 (hourly deduction), is necessary to achieve an 
operable balance among accuracy, cost, and policy 
adaptability.

Current Time-and-Region Specific  
TSZ-ECF Calculation Methods in China

China’s approach to calculating time-and-region 
specific TSZ-ECF primarily focuses on integrating  
the unique characteristics of its power system operation 
and energy structure to achieve precise computation 
and analysis of carbon emission factors. Currently,  
the main methods for calculating these factors include: 
the proportional sharing carbon flow tracing method,  
the power distribution carbon flow tracing method,  
and the complex power distribution carbon flow tracing 
method.

The Proportional Sharing Carbon Flow Tracing 
Method uses active power flow as the sole variable. 
It assumes that nodal inflow power is uniformly 
distributed to outflow lines proportionally to incoming 
lines. This approach features low computational 
burden and intuitive results, making it best suited for 
scenarios requiring rapid carbon emission responsibility 
determination with low sensitivity to reactive power. 
Typical applications include provincial grid inter-
provincial transmission carbon allocation, the State 
Grid’s “Carbon Meter” system, and minute-level 
updated low-carbon scheduling for EV charging or 
industrial loads using nodal carbon potential as signals.

The Power Distribution Carbon Flow Tracing 
Method employs power distribution factors to 
characterize the active power transfer relationship 
between sources and loads. It explicitly identifies 
generation-side carbon emissions corresponding to 
electricity consumption by enterprises or regions within 
a specific period. Consequently, it is widely applied in 
corporate product carbon footprint accounting, green 
manufacturing certification, spatial precision correction 
of provincial grid emission factors, and carbon label 
generation for green electricity consumption. Its core 
advantage lies in delivering physically transparent 
carbon emission traceability without significantly 
increasing computational load.

The Complex Power Distribution Carbon Flow 
Tracing Method concurrently accounts for both active 
and reactive power flows, employing complex power 

distribution matrices for carbon flow computation. 
While theoretically more rigorous, due to its capability 
to capture reactive power support effects on carbon 
distribution, this method necessitates inversion of 
the full-network complex power matrix, resulting 
in substantially increased computational overhead. 
Its principal applications encompass: fine-grained 
carbon emission analysis in scenarios characterized 
by significant reactive power flows such as long-
distance heavily loaded transmission lines and highly 
inductive load areas; research on carbon property rights 
demarcation between generation and consumption 
entities; and utilization as a reference benchmark 
in academic investigations validating simplified 
methodologies.

Proportional Sharing Carbon Flow Tracing Method

Yang Yi et al. proposed a direct carbon flow tracing 
method based on carbon emission flow, which allocates 
generation-side carbon emissions to the demand side 
using the proportional sharing principle, thereby 
avoiding negative carbon emission issues caused by 
complex power calculations. This method first computes 
the system’s carbon flow distribution and then directly 
traces the carbon emission path according to power 
flow direction, achieving shared carbon emission 
responsibility between generation and demand sides 
[56].

Carbon Flow Calculation Basis. Carbon emission 
flow depends on active power flow, with nodal carbon 
intensity defined as the weighted average carbon flow 
density of incoming power:

	 	

Where: Ri is the carbon flow rate of the branch  
(t CO2/h); Pi is the active power of the branch (MW).

Tracing logic. Based on the proportional-sharing 
principle, the carbon responsibility of a load RLk

 is 
determined by the nodal carbon intensity ek and the load 
power PLk

:

	

Grid Loss Allocation. Grid loss-related carbon 
emissions are allocated proportionally between 
generation and demand sides to ensure fairness.

This method directly traces carbon flow paths, 
avoiding negative carbon emission issues from complex 
power calculations, with clear physical meaning. 
It innovatively proposes a shared responsibility 
mechanism between generation and demand sides, 
particularly through proportional bidirectional allocation 
of grid loss carbon emissions, enhancing fairness in 
responsibility assignment. The method is suitable for 
lossy network scenarios and demonstrates relatively 
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high computational efficiency.
However, this method does not explicitly consider 

the impact of reactive power on grid loss distribution, 
resulting in insufficient dynamic adaptability in high 
renewable energy penetration scenarios. The real-time 
computation relies on high-precision power flow data, 
leading to substantial data acquisition costs in practical 
applications. Furthermore, cross-regional carbon 
flow tracing still depends on the proportional sharing 
assumption without incorporating electricity market 
mechanisms for optimization.

Power Distribution Carbon Flow Tracing Method

Wang Chaoqun proposed a carbon emission flow 
calculation method for power systems based on the 
power flow distribution matrix, as shown in Fig. 3. 
By constructing a power flow distribution matrix,  
this method allocates generation power to nodal loads, 
branch power flows, and network losses, addressing  
the limitations of existing methods in power and 
carbon flow allocation. The matrix establishes  
generation-load power mapping relationships and 
incorporates thermal power carbon emission models 
to achieve carbon flow allocation in lossy networks, 
enabling traceability of carbon emission flows from 
generation to load [15].

The power flow distribution matrix can be expressed 
as:

	 	

Where: Pji is the active power flowing from node i to 
node j (kW); Pi is the net active-power injection at node 
i (kW); Uj is the set of neighboring nodes that supply 
node j.

The load carbon emission responsibility is calculated 
as:

	 	

Where: PLk
 is the active power of load k (kW); Pk is 

the total active-power injection at the node where load 
k is located (kW); EGg

 is the carbon emission of power 
source g (kg CO2/h).

This method overcomes lossless network limitations 
by explicitly addressing loss allocation in lossy grids 
through the power flow distribution matrix, significantly 
improving calculation accuracy in complex networks. 
It establishes precise generation-load power mapping 
for accurate load-side carbon emission traceability and 
incorporates thermal unit operating states in dynamic 
carbon emission modeling to enhance source-load 
carbon correlation rationality. However, the matrix 
inversion operation has high computational complexity, 
resulting in low real-time calculation efficiency for large-
scale systems. The model neglects the reactive power’s 
impact on loss distribution, reducing accuracy with high 
renewable penetration. Renewable unit carbon intensity 
uses simplified equivalent models that inadequately 
reflect spatiotemporal variations.

Zuo Weilin abstracted the power system as  
a weighted directed graph using graph theory concepts. 
The proposed carbon flow network distribution algorithm 
and the path tracing algorithm employ breadth-first 

Fig. 3. Carbon emission flow calculation method for power systems based on power flow distribution matrix.
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search (BFS) for hierarchical carbon flow distribution 
and depth-first search (DFS) for tracing source-load 
path contributions, solving system-wide carbon flow 
distribution and path analysis problems. This provides 
data support for higher spatiotemporal resolution TSZ-
ECF calculation and load-side low-carbon response [16].

Network distribution algorithm. BFS calculates nodal 
carbon potential layer by layer, with branch carbon flow 
rate expressed as:

	 	

Where: ei is the carbon intensity at the sending-end 
node i of the branch (kg CO2/kWh); Pij is the active 
power flowing from branch i to branch j (kW).

Path tracing algorithm: DFS identifies all 
feasible generation-load paths, with path carbon flow 
decomposition:

	 	

Where: Eg is the carbon-emission intensity of the 
generation node g (kg CO2/kWh); Ppath is the active 
power transmitted along the path (kW); amn is the 
carbon-flow allocation coefficient for the branch from m 
to n.

This innovative graph-based approach (BFS/DFS) 
enables visual carbon flow path tracing, clearly showing 
source-to-load transmission links and improving 
interpretability. It avoids high-dimensional matrix 
operations, offering better computational efficiency than 
matrix methods, and handles lossy networks through 
equivalent loss processing for complex grid topologies. 
However, DFS may cause path combination explosions 
in very large systems, limiting practical application. 
Network loss emissions are oversimplified as virtual 
loads allocated entirely to starting nodes without 
distinguishing generator-consumer responsibilities. The 
lack of dynamic power flow models hinders response 

to minute-level carbon intensity fluctuations with high 
renewable penetration.

Zhou Tianrui et al. developed a comprehensive 
carbon accounting method (Fig. 4) and implementation 
system (Fig. 5) based on power system carbon emission 
flow theory. It calculates direct emissions from source-
side fuel consumption data and allocates indirect 
emissions to the grid and load sides using power flow 
data with “carbon flow labeling” technology. The real-
time, granular measurement approach enables “minute-
level” and “user-level” carbon emission tracking.

Nodal carbon potential (load-side emission intensity 
per unit electricity):

	 	

Where: Ri is the carbon emission of power source 
i (kg CO2/h), Pi is the active-power output of power 
source i (kW).

Branch carbon-flow density, characterizing the 
carbon emission per unit of electricity transmitted along 
a branch, is expressed as:

	 	

Where: R is the carbon flow rate of the branch (kg 
CO₂/h); P is the active power of the branch (kW).

Lossless network assumption: Carbon flows 
are linearly allocated along power flow directions, 
neglecting network losses.

This foundational work established the carbon 
emission flow theory framework, defining key concepts 
like nodal carbon potential and branch carbon flow 
density with clear physical interpretations, creating a 
unified paradigm for subsequent research. The nodal 
carbon potential directly reflects real-time carbon 
intensity of user-side consumption, supporting low-
carbon electricity usage analysis. However, the lossless 

Fig. 4. Schematic diagram of the power system comprehensive carbon accounting system.
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network assumption introduces allocation errors from 
transmission losses, limiting practical applicability. 
Static power flow models cannot capture minute-level 
dynamic impacts from renewable fluctuations. The 
framework lacks mechanisms for tracing cross-regional 
power exchanges, hindering multi-grid collaborative 
accounting.

Complex Power Distribution Carbon 
Flow Tracking Method

Yan Limei et al. proposed a carbon flow tracing 
method based on a complex power distribution matrix, 
as shown in Fig. 6, which combines active and reactive 
power in power systems to more accurately analyze the 
distribution of carbon emission flows in lossy networks. 
This method achieves precise tracing of carbon flows in 
power grids and clearly identifies the carbon emission 
sources of different loads, branches, and network losses 
[18].

The complex power distribution matrix is defined as:

	 	

Where: A is the complex-power distribution matrix; 
S is the nodal complex-power column vector (kVA); SG 
is the generator-injected complex-power column vector 
(kVA).

Matrix elements are defined as:

	 	

Where: Ṡij is the complex power flowing from branch 
i to branch j; φi is the set of upstream nodes with active 
power supplying node i.

The load carbon flow rate is expressed as:

	 	

Where: ṠLK is the complex power of load k (kVA); Ṡk 
is the total complex power at node k; cG is the carbon 
emission intensity of the generators.

The branch carbon flow rate is expressed as:

	 	

Where: Ṡij  is the complex power flowing from 
branch i to branch j (kVA); Ṡj is the total complex power 
at the receiving-end node j (kVA).

The network loss carbon flow rate is decomposed as:

	 	

Where: Cij,loss is the total carbon-flow rate attributable 
to losses on branch i-j  (t/h); Pij is the active power 
of the branch (MW); Qij is the reactive power of the 
branch (Mvar); CP

ij,loss is the active-power component of  
the loss carbon-flow rate (t/h); CQ

ij,loss is the reactive-
power component of the loss carbon-flow rate (t/h).

Fig. 5. Comprehensive carbon accounting method and implementation system based on the power system carbon emission flow theory.



Hongjian Li, et al.16

The node carbon intensity calculation:

	 	

Where: ∑iφj
Cij is the sum of the branch carbon-flow 

rates entering node j (t/h), CGj
 is the carbon-flow rate 

from the generator located at node j (t/h); Re(Sj) is the 
total active power at node j (MW).

This method explicitly handles loss allocation 
through the complex power distribution matrix, 
overcoming lossy network limitations and significantly 
improving carbon flow calculation accuracy. It is the 
first to quantify reactive power carbon responsibility 
based on active-reactive coupling relationships, clearly 
revealing reactive power’s impact on carbon emissions 
and providing a basis for carbon reduction through 
reactive power compensation. By incorporating 
historical data of thermal units to construct dynamic 
coal consumption models, it better reflects actual 
operations compared to Wang Chaoqun’s static model. 

However, the complex power matrix inversion has 
high computational complexity, resulting in low real-
time calculation efficiency for large-scale systems. 
The assumption that complex power flows in the same 
direction as active power doesn’t consider bidirectional 
power flow scenarios with renewable energy, and the 
decomposition of loss carbon emissions lacks validation 
for cross-voltage-level applicability. The method has 
limited engineering applicability, lacking cross-regional 
carbon flow tracing mechanisms, and the complete 
allocation of reactive power carbon responsibility to 
starting nodes may be controversial.

Table 4 systematically catalogs the core 
characteristics of five predominant carbon flow tracing 
approaches developed by Chinese research teams. This 
comparative analysis examines four critical dimensions: 
originators, theoretical foundations, technical merits, 
and practical constraints. The framework reveals 
inherent trade-offs among computational efficiency, 
physical accuracy, and engineering applicability, 
thereby establishing a structured reference framework 
for context-optimized method selection.

Fig. 6. Carbon flow tracking method based on a complex power distribution matrix.
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Application Scenarios and Practical 
Progress of TSZ-ECF

TSZ-ECF has been implemented in five domains 
both domestically and internationally: electricity market 
mechanism design, user-side carbon management, 
grid planning and operation, policy formulation and 
assessment, and platform development; its core value 
lies in characterizing electricity-carbon co-fluctuation 
with high spatiotemporal resolution, thereby enabling 
carbon-electricity price linkage, precise matching 
of green electricity entitlements, collaborative 
optimization of carbon-cost load management, low-
carbon dispatch, and refined allocation of carbon tax/
allowances, thus driving continuous improvement 
of supporting technologies including data platforms, 
forecasting systems, and blockchain-based traceability.

Design of Electricity Market Mechanism

TSZ-ECF reconstructs the power market mechanism 
through innovative carbon-electricity price linkage 
mechanisms and precise matching of green electricity 
environmental rights and interests.

In the innovative domain of carbon-electricity 
price coupling, the minute-level volatility of renewable 

generation causes the marginal unit’s carbon intensity 
to vary at sub-hourly scales. This spatiotemporal 
heterogeneity of carbon cost can only be borne  
by TSZ-ECF. Empirical evidence from Zhu et al. [57] 
indicates that carbon price signals instantaneously 
reshape both the clearing price and the awarded energy 
of generators in the electricity market. Using a CGE 
model, Zhang et al. [58] demonstrate that annual-
average factors cannot capture renewable fluctuations, 
severely constraining the effectiveness of the coupling 
mechanism. Li et al. [59] further reveal, via a dynamic 
pass-through model, that the pass-through efficiency 
declines by 40 % when wind penetration exceeds 30 
%, thereby achieving an intraday-scale breakthrough in 
carbon-electricity linkage.

Regarding the matching of green-electricity 
environmental attributes, TSZ-ECF precisely 
quantifies the carbon-abatement contribution of 
green power at specific times and locations, resolving 
the environmental-attribute decoupling inherent in 
fixed green-certificate schemes. Although Zhang et 
al.’s virtual-power-plant model enables green-power 
trading, it triggers double counting of environmental 
attributes. Li et al. [60] employ a bi-level game-theoretic 
model to show that the market-power imbalance 
between renewable and thermal generators hinders 

Table 4. Comparison table of each method.

Method Proposer(s) Core Principle Advantages Disadvantages

Proportional 
Sharing Carbon 
Flow Tracing 
Method [46]

Yang Yi et al.

Direct carbon-flow tracing based 
on carbon-emission-flow theory; 

allocates generation-side emissions 
to demand side via the proportional-

sharing principle

Avoids negative-carbon-
emission artifacts that can 
arise from complex-power 

calculations

Does not explicitly account 
for the influence of reactive 

power on loss allocation

Power 
Distribution 
Carbon Flow 

Tracing Method 
[15]

Wang Chaoqun 
et al.

Uses a power-flow distribution 
matrix to apportion generation output 

to nodal loads, branch flows, and 
network losses, thereby calculating 

carbon flows.

Overcomes the lossless-
network assumption; 

explicitly allocates loss-
related carbon emissions in 

lossy grids

Matrix-inversion 
complexity is high, 
limiting real-time 

performance in large-scale 
systems

Carbon-Flow 
Network 

Distribution 
Algorithm

[16]

Zuo Weilin 
et al.

Represents the power system as a 
weighted directed graph; employs 
Breadth-First Search (BFS) and 

Depth-First Search (DFS) for layered 
carbon-flow distribution and path 

contribution analysis

Novel use of graph-theoretic 
algorithms (BFS/DFS) 

enables visual path tracing 
and enhances interpretability

DFS can suffer from path-
combinatorial explosion 
in ultra-large systems, 

constraining engineering 
practicality

Whole-Chain 
Carbon 

Accounting [53]

Zhou Tianrui 
et al.

Integrates carbon-flow labeling with 
carbon-emission-flow theory to 

allocate emissions to both network 
and demand sides, achieving 

indirect-emission traceability and 
quantification

Pioneered the carbon-
emission-flow framework for 
power systems; introduced 
key concepts such as nodal 
carbon potential and branch 

carbon-flow density

Relies on lossless-network 
assumption; ignores 
carbon misallocation 

caused by transmission 
losses, limiting practical 

applicability

Complex power 
distribution 
carbon flow 

tracking method 
[18]

Yan Limei 
et al.

Utilizes a complex-power 
distribution matrix that incorporates 

both active and reactive power to 
achieve precise carbon-flow tracking

Explicitly allocates loss-
related emissions via the 
complex-power matrix, 
overcoming the lossless-
network limitation and 

improving accuracy

Still based on lossless-
network assumption; 

ignores carbon 
misallocation from 
transmission losses, 
reducing practical 

applicability
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load balancing for large consumers. Wang et al. [61] 
implement atomic bundling of green certificates via 
consortium-blockchain smart contracts, providing a 
technological cornerstone for precise attribute matching. 
In response to the wave of defaults in European PPAs 
driven by TSZ-ECF volatility, Guo et al. [62] propose 
a “green-certificate carbon-quota swap” mechanism 
that successfully recalibrates dynamic environmental 
entitlements, ultimately establishing a volatility-resilient 
system for green-power attribute matching.

At the international level, energy regulatory bodies in 
regions such as the European Union and the United States 
are actively advancing the calculation and publication 
mechanisms for high-spatiotemporal-resolution 
electricity-carbon emission factors. Presently, official 
energy agencies across numerous developed countries 
and regions have successively released hourly-level and 
even minute-level temporospatial electricity-carbon 
emission factors. China has also undertaken proactive 
measures in this domain, having officially published the 
2021 and 2022 electricity CO2 emission factors as well 
as the 2023 electricity carbon footprint factor. Jiangsu 
Dual-Creation Center provides comprehensive support 
to the provincial grid company in developing electricity-
carbon factor calculation methodologies, benchmarking 
against international frontiers. Leveraging time-of-
use/region/voltage-level power calculation models 
and real-time metering data covering generation-grid-
demand full-chain processes, the center has established  
a granular and traceable electricity-carbon factor 
database across temporal, regional, and voltage-level 
dimensions. This achievement enables high-precision 
accounting, traceability, and verifiability of power 
carbon emissions.

User-Side Carbon Management  
and Decision-Making

The user-side application focuses on three core 
scenarios, namely high-precision carbon footprint 
dynamic accounting, load-carbon cost synergistic 
optimisation, and intelligent decision-making for green 
power procurement.

Carbon footprint dynamic accounting needs to 
reflect the spatial and temporal distribution differences 
of grid currents, and TSZ-ECF can penetrate the fuzzy 
boundary of the regional average factor. Zhou et al. 
pioneered the theory of “carbon flow” to achieve hourly 
mapping of carbon intensity [63], and Li et al. established 
a matching model for power purchase paths [64].  
The traditional framework of WRI leads to 
homogenisation of carbon footprints due to the regional 
average factor, and Zhu et al. [56] developed the coupled 
framework of LCA-Carbon flow to invert carbon 
emissions through coal consumption, which can be 
used to estimate carbon emissions with accuracy and 
precision in the context of data limitations up to 90%, 
providing a universal solution for dynamic accounting 
[57].

Load-carbon cost co-optimization hinges on the 
sub-hourly responsiveness of the power system’s 
carbon intensity – an attribute that constitutes the core 
advantage of TSZ-ECF. Khan et al. [65] demonstrate 
that shifting 10% of industrial demand into high-wind 
hours reduces aggregate emissions by 5%. Valenzuela 
et al. [66] employ minute-level carbon-price signals to 
enable dynamic load modulation at Google data centers 
yet omit the carbon cost of reactive power. Wang et al. 
[67] integrate life-cycle assessment (LCA) with carbon 
trading in an integrated energy system, achieving 
an additional 3.4% abatement through “electricity-
hydrogen-heat” co-supply. Li et al. [68] propose  
a “carbon potential voltage” co-optimization model that 
attributes a further 2% emission reduction to reactive-
power compensation, thereby extending load-carbon 
cost optimization to generation, transmission, and 
consumption.

Intelligent green-power procurement mandates 
real-time tracking of the actual carbon intensity of 
renewable electricity, a requirement that TSZ-ECF 
fulfills by disentangling the coupled effects of resource 
endowments and transmission paths. Levasseur et al. 
[69] reveal a 300% disparity in hydropower carbon 
intensity between dry and wet seasons, overturning 
the uniform-value premise of green certificates. Bie et 
al. [70] design a “contract path carbon factor” model 
that reduces corporate procurement emissions by 
12%, embedding power-flow tracing within green-
power trading to allow buyers to select the lowest-
carbon supplier based on actual flows. Li et al. [71] 
compress green-power verification latency to under 
five seconds via zero-knowledge proofs, delivering  
a key breakthrough for second-scale intelligent decision-
making.

Internationally, WattTime in the United States 
provides temporal-regional marginal electricity-carbon 
emission factors, enabling users to monitor power grid 
carbon emissions in real-time and thereby select cleaner, 
low-carbon electricity resources. Concurrently, in 
certain UK regions, temporal-regional electricity-carbon 
emission factors guide EV users to charge during periods 
of lower carbon emissions. Smart charging systems 
automatically adjust EV charging schedules based on 
dynamic grid carbon emission factors, prioritizing time 
slots with higher renewable energy generation shares to 
reduce EV carbon footprints [4].

Domestically, temporal-regional electricity-
carbon emission factors assist EV users and charging 
infrastructure operators in optimizing charging time/
location planning. Users may select low-carbon-
emission periods and regions for charging based on 
emission factor fluctuations, reducing their EVs’ 
carbon footprints. Simultaneously, operators leverage 
emission factor dynamics to optimize charging facility 
deployment and operational strategies, enhancing 
energy utilization efficiency [72]. In photovoltaic module 
manufacturing, these factors enable high-precision 
accounting of production-process carbon emissions, 



19Time-Sharing and Zonal Electricity Carbon...

supporting enterprises in optimizing production 
schedules to lower carbon emissions.

Grid Planning, Operation, and Dispatch

Grid-side applications revolve around the three 
dimensions of low-carbon dispatch strategy optimisation, 
new energy consumption benefit assessment, and 
carbon-reducing oriented investment decision-making.

Low-carbon dispatching requires capturing the 
switching effect of nodal marginal units, a task for 
which TSZ-ECF quantifies the transmission of carbon 
emissions through grid topology. Wang et al. [67] base 
their dispatch on nodal average carbon potential and 
therefore do not represent this switching effect. Wei et 
al. [73] innovatively define a nodal marginal carbon 
emission factor and reveal that the photovoltaic benefit 
in the Yangtze River Delta is 9% higher than in Gansu, 
thereby initiating refined scheduling strategies. Shi et 
al. [74] couple a line-loss model and demonstrate that 
5% of storage capacity is required to offset network-loss 
deviations, further improving dispatch accuracy.

Evaluating the carbon-mitigation benefits of 
renewable integration necessitates ex-ante assessment of 
the carbon lock-in risk associated with interprovincial 
transmission; TSZ-ECF disentangles the dynamic 
coupling between power flows and carbon flows.  
The Energy Foundation does not quantify such risk, 
whereas the State Grid Research Institute applies  
a “carbon-flow–power-flow” model and projects that the 
carbon benefit of the Shaanxi-Wuhan HVDC corridor 
will decline by 34% by 2030, uncovering the long-term 
evolution of renewable-integration risk.

Carbon-oriented investment decisions demand 
precise comparison of technological pathways;  
TSZ-ECF decomposes the per-kWh carbon-abatement 
cost differences across grid segments. The CSG 
Research Institute constructs a “carbon-benefit 
investment” price-ratio model and shows that expanding 
the distribution network achieves a per-kWh abatement 
cost only one-fifth that of ultra-high-voltage options, 
providing quantitative grounds for resolving the 
imbalance in backbone-grid investment. Shi et al.’s [74] 
campus microgrid study further indicates that storage 
investment can cumulatively reduce Scope 2 emissions 
by 12% percent over a decade.

Internationally, in 2022, the US Congress legislatively 
mandated the U.S. Energy Information Administration 
(EIA) to publish hourly-level average and marginal 
carbon emission factors, providing foundational data for 
product carbon footprint accounting. Concurrently, the 
UK National Grid collaborates with research institutions 
to forecast carbon intensity trends across 14 regional 
zones at 30-minute temporal resolution with 96-hour 
lead times. Furthermore, the European Union, jointly 
with Japan, Canada, and the US, promotes establishing 
an hourly electricity traceability mechanism and 
researches reducing temporal granularity to 15-minute 
levels to align with energy spot market clearing times.

The UK National Grid’s forecasting initiative 
delivers high-precision carbon emission predictions 
for grid dispatch, facilitating priority scheduling 
of renewable energy during low-carbon periods. 
Finland’s grid operator now publishes carbon emission 
intensity every 3 minutes, enabling real-time dispatch 
optimization [72].

Domestically, China’s research and application 
of temporal-regional grid carbon emission factor 
calculation methodologies remain nascent. Tsinghua 
University has pioneered a carbon emission flow 
analysis framework integrating carbon emission analysis 
with power flow calculations. This framework defines 
correlation matrices and vectors to compute power 
system carbon emission flows, accounting for emissions 
across generation, transmission, and distribution 
processes, thereby revealing carbon emission patterns 
across spatiotemporal scales.

Additionally, State Grid Big Data Center partners 
with Shanghai Envision Innovation to develop a next-
generation electricity carbon intensity accounting 
system. This system defines regional and marginal 
carbon intensity calculation methods, constructs 
coupled carbon accounting models for generation and 
consumption sides and integrates these into green 
electricity trading mechanisms. State Grid Anhui 
Provincial Branch has developed a pilot application for 
blockchain-based carbon verification integrated with 
power data, delivering multifunctional capabilities; 
while State Grid Qinghai Provincial Branch leverages 
the Qinghai Grid Data Platform to construct a provincial 
carbon emission monitoring model, achieving province-
wide daily-frequency carbon emission analysis [4].

Policy Design and Impact Assessment

TSZ-ECF has important application value in the 
design of carbon tax mechanisms, carbon allowance 
allocation, and policy effectiveness evaluation. First, 
TSZ-ECF can accurately reflect the marginal carbon 
emissions of electricity generation in different regions 
and at different times. Based on real-time carbon 
emission levels, carbon taxes can be levied more 
precisely, encouraging enterprises to optimize their 
electricity load and promote low-carbon transformation. 
Cui et al. proposed a comprehensive demand response 
scheduling method for the user side based on the 
characteristics of dynamic electricity carbon emission 
factors and carbon taxation. The study shows that 
carbon taxes can guide users to pay attention to the 
differences in electricity carbon emission factors at 
different times, thus promoting low-carbon electricity 
usage behavior [75]. The U.S. Internal Revenue Service 
(IRS) and Department of the Treasury mandate under 
the Inflation Reduction Act that the clean hydrogen 
production tax credit requires compliance with hourly 
matching and geographic deliverability. This framework 
permits hour-by-hour lifecycle emission accounting 
during the hourly matching phase, thereby substantively 
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embedding temporal-regional grid emission factors into 
tax incentive thresholds [76].

Secondly, in the carbon emissions trading market, 
the application of TSZ-ECF can provide more refined 
allocation criteria for electricity-consuming enterprises, 
more accurately reflecting their actual carbon emission 
responsibilities and guiding them to improve electricity 
usage behavior. Lu et al. introduced the concept of 
Locational Marginal Carbon Emission (LMCE), 
grounded in market-clearing mechanisms. Building 
on this, they derived the Locational Average Carbon 
Emission (LACE) metric to quantify the total carbon 
liability associated with electricity consumption. 
This approach helps correct the over-attribution of 
emissions on the demand side [75]. In China’s practice, 
the Guangzhou Municipal People’s Government has 
directed research on city-level dynamic grid emission 
factors to enable precise calculation of temporal-regional 
grid emission factors, laying the technical groundwork 
for subsequent carbon accounting systems [77].

Finally, TSZ-ECF serves as a tool to evaluate the 
real-world impact of policy interventions on carbon 
reduction. By accurately quantifying the emission 
reductions, it is possible to verify policy effectiveness 
and further improve policy guidance and incentive 
mechanisms. Amir Shahin Kamjou et al. compared the 
use of historical data and real-time data in estimating 
marginal emission factors in electricity generation. 
They suggested that real-time marginal emission factors 
allow policymakers to better understand the temporal 
and regional variation in emissions. This supports 
more effective emission reduction policies and energy 
structure optimization [76].

Empirical Applications and System Architecture

At present, the world is actively addressing 
climate change and promoting the clean and low-
carbon transition of energy. Countries are paying 
increasing attention to the completeness, accuracy, and 

transparency of electricity carbon emission data. They 
are also promoting the calculation and application of 
TSZ-ECF. In response, many countries and regions 
have introduced relevant policies and launched platform 
development initiatives.

In 2022, the US Congress enacted legislation 
requiring the US Energy Information Administration 
(EIA) to publish hourly average and marginal carbon 
emission factors. These data serve as a basis for 
calculating product carbon footprints. The California 
Independent System Operator (CAISO) platform (Fig. 6) 
provides hourly-updated regional carbon intensity data, 
which are further disaggregated by subregional grids. In 
partnership with academic institutions, the UK National 
Grid has developed a system to forecast carbon intensity 
trends across 14 national regions, with 30-minute 
resolution and a 96-hour forecast horizon. Meanwhile, 
the Carbon Intensity API platform (Fig. 7) provides 
regional electricity carbon intensity updates every 5 
minutes, supporting both real-time and forecasted data. 
It has been widely adopted in mobile applications and 
corporate carbon reduction systems. In terms of EU 
and international cooperation, the European Union 
has worked with Japan, Canada, the United States, 
and others to promote the establishment of an hourly 
electricity traceability mechanism. It is also exploring 
reducing the temporal granularity to 15-minute intervals 
to align with electricity spot market clearing times. In 
Finland, the power grid already releases carbon intensity 
data every 3 minutes. In addition, Electricity Maps (Fig. 
8) provides data on power generation mix, electricity 
prices, and carbon intensity for over 190 countries and 
regions. It provides real-time, historical, and 72-hour 
forecast data. Using the flow-tracing technology, it 
calculates TSZ-ECFs that let users monitor the carbon 
intensity and energy source mix of each region at any 
time.

China has also launched national initiatives to 
improve carbon tracking. State Grid Corporation of 
China, in collaboration with multiple institutions, has 

Fig. 6. California Independent System Operator (CAISO) platform.
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established a national carbon emission monitoring 
and analysis platform. Pilot programs have been 
conducted for calculating regional electricity carbon 
emission factors, enabling monthly estimation of 
carbon emissions at national, regional, and sectoral 
levels. China Southern Power Grid has established 
a carbon emission monitoring platform focused on 
energy consumption. The system enables the calculation 
and dynamic monitoring of total carbon emissions 
and carbon intensity per unit of GDP across different 
regions, sectors, and even individual enterprises within 
its service area.

Results and Discussion

Despite significant advances in Temporal-Regional 
Grid Emission Factors (TSZ-ECF) research, six 
critical challenges persist in scaling toward large-scale 
engineering applications.

Firstly, insufficient data accessibility and 
transparency constitute the primary barrier. Core 
data, including real-time electricity flows and power 
generation unit coal/gas consumption, are fragmented 
among grid operators, power plants, trading centers, and 
third parties, lacking unified open interfaces; renewable 
electricity, green certificates, and carbon emission 

Fig. 8. Electricity Maps.

Fig. 7. UK Carbon Intensity API platform.
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monitoring data suffer from low update frequencies 
and inconsistent metrics, impeding minute- or even 
second-level factor calculations. This stems from 
intertwined data silos and commercial confidentiality 
clauses, compounded by the absence of real-time 
carbon monitoring in China’s Regulations on Security 
Protection of Power Monitoring Systems, resulting 
in ambiguous data quality accountability. As Zhou 
et al. [78] demonstrated in emerging economies, data 
availability dominates uncertainty in carbon emission 
quantification, necessitating institutional designs to 
dismantle administrative and sectoral barriers.

Future initiatives should leverage the UK Carbon 
Intensity API and US eGRID models to establish 
a national electricity-carbon data hub, formulating 
Minimum Dataset (MDS) standards; integrate 
blockchain and privacy-preserving computing to achieve 
“visible utility without raw data exposure”. We propose 
that the National Development and Reform Commission 
(NDRC) establish and chair an Electricity-Carbon Data 
Alliance to draft standards, followed by deploying 
federated learning nodes in the Yangtze River Delta and 
Jing-Jin-Ji regions toward province-level node coverage. 
Concurrently, amend the Regulations on Security 
Protection of Power Monitoring Systems to: (1) classify 
real-time carbon measurements under Security Level 
II, (2) grant data-sharing exemption clauses for carbon 
accountability purposes.

Secondly, the trade-off between model complexity 
and computational efficiency intensifies in provincial-
level grids. Algorithms such as complex power 
distribution matrices, graph-theoretic DFS/BFS, and 
carbon flow networks exhibit exponential computational 
growth for matrix inversions or traversals in large-scale 
systems. High renewable penetration induces frequent 
node-branch state changes, invalidating traditional 
linearized assumptions and requiring nonlinear 
optimal power flow or rolling horizon optimization – 
compromising real-time performance. Fundamentally, 
carbon flow tracing is a nonlinear-nonconvex-high-
dimensional problem, while existing EMS/DMS CPU-
GPU heterogeneous computing lacks deep customization 
for carbon flow kernels, creating dual algorithm-
hardware bottlenecks. Zhang et al. [79] revealed 
analogous effects in China’s high-carbon industries: 
capital misallocation driven by carbon risks hinges on 
computational latency; delays beyond 5 minutes lock in 
28-million-yuan inefficient capital, directly applicable to 
TSZ-ECF scenarios.

Future initiatives should establish a national 
electricity-carbon data hub informed by the UK Carbon 
Intensity API and US eGRID frameworks, instituting 
Minimum Dataset (MDS) standards while integrating 
blockchain and privacy-preserving computing to enable 
visible utility without raw data exposure. We propose 
that the National Development and Reform Commission 
(NDRC) convenes an Electricity-Carbon Data Alliance 
to formulate standards, subsequently deploying 
federated learning nodes across the Yangtze River Delta  

and Jing-Jin-Ji regions to achieve provincial node 
coverage. Concurrent amendments to the Regulations on 
Security Protection of Power Monitoring Systems must 
classify real-time carbon measurements under Security 
Level II with data-sharing exemption clauses. Subsequent 
phases require implementing physical-data dual-driven 
methodologies, where graph neural networks and 
Transformer architectures train spatiotemporal carbon 
potential surfaces offline via power-flow–carbon-flow 
coupling models. Online inference executes lightweight 
forward propagation for minute-second responsiveness 
within an edge-cloud orchestration framework. Critical 
milestones comprise: developing an open-source–
carbon-flow graph neural network library using PyTorch 
Geometric with a 100-node benchmark system; adapting 
GPU-accelerated optimal power flow kernels for sub-
500 ms cloud inference latency; and deploying INT8-
quantized models on edge devices by 2028, featuring 
sub-300 MB memory footprints compliant with county-
level embedded gateway constraints.

Thirdly, it is difficult to choose the appropriate 
spatiotemporal scale. Excessively fine spatiotemporal 
granularity (such as 5 minutes per node) can improve 
accuracy but leads to the “curse of dimensionality”; 
overly coarse divisions cannot capture local fluctuations 
in new energy output, resulting in distorted demand 
response and green electricity trading incentives. 
Current Guidelines for Power System Security and 
Stability specify only 15-minute security constraints 
without carbon granularity guidance. Future work 
should establish a hierarchical-domain-adaptive 
mechanism dynamically adjusting granularity based on 
renewable penetration, load density, and grid congestion; 
employ multi-objective optimization (accuracy real time 
economy) for automatic optimal-scale selection, enabling 
scalable spatiotemporal resolution. Implementation 
requires: (1) clustering typical provinces via penetration-
congestion matrices, (2) developing Python toolkits with 
NSGA-III for minute-level switching, (3) advancing the 
TSZ-ECF Multi-scale Application Guideline from group 
to industry standard.

Fourth, inadequate uncertainty quantification and 
robustness persist. Compound uncertainties – from 
stochastic source-load behaviors, market price volatility, 
and intrinsic carbon factor variability – risk misleading 
deterministic factors. Current studies predominantly 
provide point estimates, lacking confidence intervals, 
robust intervals, or scenario analyses. This originates 
from heteroscedastic multi-source distributions in 
carbon factor chains, exacerbated by China’s carbon 
market MRV system using fixed ±5% error bands 
that ignore real-time tail quantiles. Zhou et al. [78] 
emphasized that neglecting confidence intervals in 
emerging economies systematically underestimates 
carbon emission elasticity, distorting policy simulations.

Future research shall establish a probabilistic interval 
scenario tri-dimensional uncertainty representation 
framework to generate posterior distributions of carbon 
emission factors through Bayesian deep learning, 
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subsequently embedding carbon factor confidence 
intervals into spot market clearing and renewable energy 
trading mechanisms for robust low-carbon decision-
making. Implementation requires initially developing 
an open-source Bayesian neural network framework to 
deliver 95% confidence intervals; subsequently, piloting 
robust carbon curves clearing in Guangdong’s spot 
electricity market to quantify cost efficiency against 
deterministic carbon factor benchmarks; and ultimately, 
incorporating confidence intervals into renewable 
energy trading contractual templates to form underlying 
derivatives.

Fifth, misalignment with existing carbon/power 
markets creates friction. National/provincial GHG 
inventories still use annual/regional average factors, 
while corporate carbon disclosures and CBAM 
calculations adopt inconsistent metrics; power spot 
markets, renewable electricity trading, and carbon quota 
settlements operate with divergent temporal-spatial 
boundaries. Rooted in segregated governance between 
electricity and carbon authorities, this institutional 
friction manifests through unaligned statistical 
frameworks, reporting protocols, and data dictionaries.

Future policy should establish national Technical 
Specifications for Time Spatial Zonal-Electricity 
Carbon Factors (TSZ-ECF), standardizing boundaries, 
methodologies, data protocols, and interfaces while 
aligning with international regimes, including the 
EU Carbon Border Adjustment Mechanism (CBAM), 
ISO 14067, and the GHG Protocol to develop  
cross-border carbon labeling mutual recognition 
protocols for export verification. Implementation 
requires: initially launching the standardization initiative 
with parallel bilingual CBAM-alignment studies; then 
establishing a Guangdong-Hong Kong-Macao-EU 
renewable energy pilot to achieve TSZ-ECF and EU 
Emission Factors (EF) mutual recognition; concurrently 
embedding carbon labels in Harmonized System (HS) 
codes at customs for single-pass export verification.

Finally, the lack of standardization and 
interoperability has resulted in siloed regional 
platforms, hindering carbon accountability for cross-
border renewable electricity or imported power. This 
deficiency originates from two critical gaps: TSZ-ECF 
remains excluded from the IEC 61970/61968 Common 
Information Model (CIM) extension package, while 
China’s Guidelines for Power Carbon Metrology 
currently holds only voluntary group-standard status 
without legally binding force.

To resolve these barriers, TSZ-ECF must serve as 
the nexus integrating the full “generation scheduling-
market clearing-carbon quotas-demand response”  
chain. Concretely, day-ahead and real-time electricity 
markets should adopt carbon curve bidding, carbon 
markets need to permit TSZ-ECF-driven dynamic quota 
adjustments, and demand-side strategies (including 
interruptible loads, virtual power plants, and storage 
dispatch) should embed real-time carbon factors. 
A regulatory sandbox mechanism is proposed for 

pilot deployment in Beijing-Tianjin-Hebei, Yangtze 
River Delta, and Guangdong-Hong Kong-Macao 
regions to establish replicable electricity-carbon 
synergy paradigms. Implementation will follow  
a phased approach: First, conduct carbon curve bidding 
simulations in the Beijing-Tianjin-Hebei grid and 
publish technical reports. Subsequently, enable ±5% 
quota adjustments based on TSZ-ECF in the Yangtze 
River Delta carbon market. Finally, integrate TSZ-
ECF into virtual power plant storage strategies across 
Guangdong-Hong Kong-Macao to achieve sub-5-minute 
closed-loop response cycles.

Conclusions

The Time Space-Zone Electricity Carbon Factor 
(TSZ-ECF), characterized by its dynamic, marginal, 
and spatially refined nature, is emerging as the 
“yardstick” that connects the electricity market, carbon 
market, and energy internet. This paper systematically 
reviews the theoretical basis of TSZ-ECF, the evolution 
of its calculation methods both internationally and 
domestically, and its diverse values in electricity market 
design, user-side carbon management, grid operation, 
and policy evaluation. The research results show that 
the shift from “annual-regional average values” to 
“minute-node marginal values” enables TSZ-ECF to 
capture the spatio-temporal heterogeneity brought by 
high proportions of renewable energy, significantly 
improving decision-making accuracy in scenarios such 
as carbon footprint, green power trading, and demand 
response.

International experience indicates that economies 
like the United States, the United Kingdom, Europe, 
Australia, and Japan have formed a “government-
university-enterprise” collaborative data and algorithm 
ecosystem, but have yet to solve key challenges such 
as cross-border power interaction and green power 
deduction. China, on the other hand, has achieved 
original breakthroughs in carbon flow tracking theory, 
graph theory algorithms, and full-process carbon 
measurement, but still faces shortcomings in data 
openness and standard mutual recognition. The four 
major bottlenecks of data, algorithms, standards, 
and markets are intercoupled, and a systematic 
solution is urgently needed through national-level 
data infrastructure, lightweight AI algorithms, 
unified technical norms, and cross-market mechanism 
innovation. Looking ahead, as the “dual carbon” 
goals enter the critical stage, TSZ-ECF will move 
from academic research to large-scale engineering 
applications, becoming the “baton” for real-time low-
carbon dispatch in power systems, the “price tag” 
for enterprise carbon asset management, and the 
“passport” for mutual recognition of carbon footprints 
in international trade.
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